Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dibval2
Next ⟩
dibopelval2
Metamath Proof Explorer
Ascii
Unicode
Theorem
dibval2
Description:
Value of the partial isomorphism B.
(Contributed by
NM
, 18-Jan-2014)
Ref
Expression
Hypotheses
dibval2.b
⊢
B
=
Base
K
dibval2.l
⊢
≤
˙
=
≤
K
dibval2.h
⊢
H
=
LHyp
⁡
K
dibval2.t
⊢
T
=
LTrn
⁡
K
⁡
W
dibval2.o
⊢
0
˙
=
f
∈
T
⟼
I
↾
B
dibval2.j
⊢
J
=
DIsoA
⁡
K
⁡
W
dibval2.i
⊢
I
=
DIsoB
⁡
K
⁡
W
Assertion
dibval2
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
I
⁡
X
=
J
⁡
X
×
0
˙
Proof
Step
Hyp
Ref
Expression
1
dibval2.b
⊢
B
=
Base
K
2
dibval2.l
⊢
≤
˙
=
≤
K
3
dibval2.h
⊢
H
=
LHyp
⁡
K
4
dibval2.t
⊢
T
=
LTrn
⁡
K
⁡
W
5
dibval2.o
⊢
0
˙
=
f
∈
T
⟼
I
↾
B
6
dibval2.j
⊢
J
=
DIsoA
⁡
K
⁡
W
7
dibval2.i
⊢
I
=
DIsoB
⁡
K
⁡
W
8
1
2
3
6
diaeldm
⊢
K
∈
V
∧
W
∈
H
→
X
∈
dom
⁡
J
↔
X
∈
B
∧
X
≤
˙
W
9
8
biimpar
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
X
∈
dom
⁡
J
10
1
3
4
5
6
7
dibval
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
dom
⁡
J
→
I
⁡
X
=
J
⁡
X
×
0
˙
11
9
10
syldan
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
I
⁡
X
=
J
⁡
X
×
0
˙