Metamath Proof Explorer


Theorem dibval2

Description: Value of the partial isomorphism B. (Contributed by NM, 18-Jan-2014)

Ref Expression
Hypotheses dibval2.b B = Base K
dibval2.l ˙ = K
dibval2.h H = LHyp K
dibval2.t T = LTrn K W
dibval2.o 0 ˙ = f T I B
dibval2.j J = DIsoA K W
dibval2.i I = DIsoB K W
Assertion dibval2 K V W H X B X ˙ W I X = J X × 0 ˙

Proof

Step Hyp Ref Expression
1 dibval2.b B = Base K
2 dibval2.l ˙ = K
3 dibval2.h H = LHyp K
4 dibval2.t T = LTrn K W
5 dibval2.o 0 ˙ = f T I B
6 dibval2.j J = DIsoA K W
7 dibval2.i I = DIsoB K W
8 1 2 3 6 diaeldm K V W H X dom J X B X ˙ W
9 8 biimpar K V W H X B X ˙ W X dom J
10 1 3 4 5 6 7 dibval K V W H X dom J I X = J X × 0 ˙
11 9 10 syldan K V W H X B X ˙ W I X = J X × 0 ˙