Metamath Proof Explorer


Theorem dibval2

Description: Value of the partial isomorphism B. (Contributed by NM, 18-Jan-2014)

Ref Expression
Hypotheses dibval2.b B=BaseK
dibval2.l ˙=K
dibval2.h H=LHypK
dibval2.t T=LTrnKW
dibval2.o 0˙=fTIB
dibval2.j J=DIsoAKW
dibval2.i I=DIsoBKW
Assertion dibval2 KVWHXBX˙WIX=JX×0˙

Proof

Step Hyp Ref Expression
1 dibval2.b B=BaseK
2 dibval2.l ˙=K
3 dibval2.h H=LHypK
4 dibval2.t T=LTrnKW
5 dibval2.o 0˙=fTIB
6 dibval2.j J=DIsoAKW
7 dibval2.i I=DIsoBKW
8 1 2 3 6 diaeldm KVWHXdomJXBX˙W
9 8 biimpar KVWHXBX˙WXdomJ
10 1 3 4 5 6 7 dibval KVWHXdomJIX=JX×0˙
11 9 10 syldan KVWHXBX˙WIX=JX×0˙