Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dibval
Next ⟩
dibopelvalN
Metamath Proof Explorer
Ascii
Unicode
Theorem
dibval
Description:
The partial isomorphism B for a lattice
K
.
(Contributed by
NM
, 8-Dec-2013)
Ref
Expression
Hypotheses
dibval.b
⊢
B
=
Base
K
dibval.h
⊢
H
=
LHyp
⁡
K
dibval.t
⊢
T
=
LTrn
⁡
K
⁡
W
dibval.o
⊢
0
˙
=
f
∈
T
⟼
I
↾
B
dibval.j
⊢
J
=
DIsoA
⁡
K
⁡
W
dibval.i
⊢
I
=
DIsoB
⁡
K
⁡
W
Assertion
dibval
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
dom
⁡
J
→
I
⁡
X
=
J
⁡
X
×
0
˙
Proof
Step
Hyp
Ref
Expression
1
dibval.b
⊢
B
=
Base
K
2
dibval.h
⊢
H
=
LHyp
⁡
K
3
dibval.t
⊢
T
=
LTrn
⁡
K
⁡
W
4
dibval.o
⊢
0
˙
=
f
∈
T
⟼
I
↾
B
5
dibval.j
⊢
J
=
DIsoA
⁡
K
⁡
W
6
dibval.i
⊢
I
=
DIsoB
⁡
K
⁡
W
7
1
2
3
4
5
6
dibfval
⊢
K
∈
V
∧
W
∈
H
→
I
=
x
∈
dom
⁡
J
⟼
J
⁡
x
×
0
˙
8
7
adantr
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
dom
⁡
J
→
I
=
x
∈
dom
⁡
J
⟼
J
⁡
x
×
0
˙
9
8
fveq1d
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
dom
⁡
J
→
I
⁡
X
=
x
∈
dom
⁡
J
⟼
J
⁡
x
×
0
˙
⁡
X
10
fveq2
⊢
x
=
X
→
J
⁡
x
=
J
⁡
X
11
10
xpeq1d
⊢
x
=
X
→
J
⁡
x
×
0
˙
=
J
⁡
X
×
0
˙
12
eqid
⊢
x
∈
dom
⁡
J
⟼
J
⁡
x
×
0
˙
=
x
∈
dom
⁡
J
⟼
J
⁡
x
×
0
˙
13
fvex
⊢
J
⁡
X
∈
V
14
snex
⊢
0
˙
∈
V
15
13
14
xpex
⊢
J
⁡
X
×
0
˙
∈
V
16
11
12
15
fvmpt
⊢
X
∈
dom
⁡
J
→
x
∈
dom
⁡
J
⟼
J
⁡
x
×
0
˙
⁡
X
=
J
⁡
X
×
0
˙
17
16
adantl
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
dom
⁡
J
→
x
∈
dom
⁡
J
⟼
J
⁡
x
×
0
˙
⁡
X
=
J
⁡
X
×
0
˙
18
9
17
eqtrd
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
dom
⁡
J
→
I
⁡
X
=
J
⁡
X
×
0
˙