Step |
Hyp |
Ref |
Expression |
1 |
|
dibval.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dibval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dibval.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dibval.o |
⊢ 0 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
5 |
|
dibval.j |
⊢ 𝐽 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
dibval.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
1 2 3 4 5 6
|
dibfval |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝐼 = ( 𝑥 ∈ dom 𝐽 ↦ ( ( 𝐽 ‘ 𝑥 ) × { 0 } ) ) ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ dom 𝐽 ) → 𝐼 = ( 𝑥 ∈ dom 𝐽 ↦ ( ( 𝐽 ‘ 𝑥 ) × { 0 } ) ) ) |
9 |
8
|
fveq1d |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ dom 𝐽 ) → ( 𝐼 ‘ 𝑋 ) = ( ( 𝑥 ∈ dom 𝐽 ↦ ( ( 𝐽 ‘ 𝑥 ) × { 0 } ) ) ‘ 𝑋 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐽 ‘ 𝑥 ) = ( 𝐽 ‘ 𝑋 ) ) |
11 |
10
|
xpeq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐽 ‘ 𝑥 ) × { 0 } ) = ( ( 𝐽 ‘ 𝑋 ) × { 0 } ) ) |
12 |
|
eqid |
⊢ ( 𝑥 ∈ dom 𝐽 ↦ ( ( 𝐽 ‘ 𝑥 ) × { 0 } ) ) = ( 𝑥 ∈ dom 𝐽 ↦ ( ( 𝐽 ‘ 𝑥 ) × { 0 } ) ) |
13 |
|
fvex |
⊢ ( 𝐽 ‘ 𝑋 ) ∈ V |
14 |
|
snex |
⊢ { 0 } ∈ V |
15 |
13 14
|
xpex |
⊢ ( ( 𝐽 ‘ 𝑋 ) × { 0 } ) ∈ V |
16 |
11 12 15
|
fvmpt |
⊢ ( 𝑋 ∈ dom 𝐽 → ( ( 𝑥 ∈ dom 𝐽 ↦ ( ( 𝐽 ‘ 𝑥 ) × { 0 } ) ) ‘ 𝑋 ) = ( ( 𝐽 ‘ 𝑋 ) × { 0 } ) ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ dom 𝐽 ) → ( ( 𝑥 ∈ dom 𝐽 ↦ ( ( 𝐽 ‘ 𝑥 ) × { 0 } ) ) ‘ 𝑋 ) = ( ( 𝐽 ‘ 𝑋 ) × { 0 } ) ) |
18 |
9 17
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ dom 𝐽 ) → ( 𝐼 ‘ 𝑋 ) = ( ( 𝐽 ‘ 𝑋 ) × { 0 } ) ) |