Metamath Proof Explorer


Theorem dibopelvalN

Description: Member of the partial isomorphism B. (Contributed by NM, 18-Jan-2014) (Revised by Mario Carneiro, 6-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses dibval.b 𝐵 = ( Base ‘ 𝐾 )
dibval.h 𝐻 = ( LHyp ‘ 𝐾 )
dibval.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dibval.o 0 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
dibval.j 𝐽 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
dibval.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
Assertion dibopelvalN ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑋 ∈ dom 𝐽 ) → ( ⟨ 𝐹 , 𝑆 ⟩ ∈ ( 𝐼𝑋 ) ↔ ( 𝐹 ∈ ( 𝐽𝑋 ) ∧ 𝑆 = 0 ) ) )

Proof

Step Hyp Ref Expression
1 dibval.b 𝐵 = ( Base ‘ 𝐾 )
2 dibval.h 𝐻 = ( LHyp ‘ 𝐾 )
3 dibval.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
4 dibval.o 0 = ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) )
5 dibval.j 𝐽 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
6 dibval.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
7 1 2 3 4 5 6 dibval ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑋 ∈ dom 𝐽 ) → ( 𝐼𝑋 ) = ( ( 𝐽𝑋 ) × { 0 } ) )
8 7 eleq2d ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑋 ∈ dom 𝐽 ) → ( ⟨ 𝐹 , 𝑆 ⟩ ∈ ( 𝐼𝑋 ) ↔ ⟨ 𝐹 , 𝑆 ⟩ ∈ ( ( 𝐽𝑋 ) × { 0 } ) ) )
9 opelxp ( ⟨ 𝐹 , 𝑆 ⟩ ∈ ( ( 𝐽𝑋 ) × { 0 } ) ↔ ( 𝐹 ∈ ( 𝐽𝑋 ) ∧ 𝑆 ∈ { 0 } ) )
10 3 fvexi 𝑇 ∈ V
11 10 mptex ( 𝑓𝑇 ↦ ( I ↾ 𝐵 ) ) ∈ V
12 4 11 eqeltri 0 ∈ V
13 12 elsn2 ( 𝑆 ∈ { 0 } ↔ 𝑆 = 0 )
14 13 anbi2i ( ( 𝐹 ∈ ( 𝐽𝑋 ) ∧ 𝑆 ∈ { 0 } ) ↔ ( 𝐹 ∈ ( 𝐽𝑋 ) ∧ 𝑆 = 0 ) )
15 9 14 bitri ( ⟨ 𝐹 , 𝑆 ⟩ ∈ ( ( 𝐽𝑋 ) × { 0 } ) ↔ ( 𝐹 ∈ ( 𝐽𝑋 ) ∧ 𝑆 = 0 ) )
16 8 15 bitrdi ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑋 ∈ dom 𝐽 ) → ( ⟨ 𝐹 , 𝑆 ⟩ ∈ ( 𝐼𝑋 ) ↔ ( 𝐹 ∈ ( 𝐽𝑋 ) ∧ 𝑆 = 0 ) ) )