| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dibval.b |
|- B = ( Base ` K ) |
| 2 |
|
dibval.h |
|- H = ( LHyp ` K ) |
| 3 |
|
dibval.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 4 |
|
dibval.o |
|- .0. = ( f e. T |-> ( _I |` B ) ) |
| 5 |
|
dibval.j |
|- J = ( ( DIsoA ` K ) ` W ) |
| 6 |
|
dibval.i |
|- I = ( ( DIsoB ` K ) ` W ) |
| 7 |
1 2 3 4 5 6
|
dibval |
|- ( ( ( K e. V /\ W e. H ) /\ X e. dom J ) -> ( I ` X ) = ( ( J ` X ) X. { .0. } ) ) |
| 8 |
7
|
eleq2d |
|- ( ( ( K e. V /\ W e. H ) /\ X e. dom J ) -> ( <. F , S >. e. ( I ` X ) <-> <. F , S >. e. ( ( J ` X ) X. { .0. } ) ) ) |
| 9 |
|
opelxp |
|- ( <. F , S >. e. ( ( J ` X ) X. { .0. } ) <-> ( F e. ( J ` X ) /\ S e. { .0. } ) ) |
| 10 |
3
|
fvexi |
|- T e. _V |
| 11 |
10
|
mptex |
|- ( f e. T |-> ( _I |` B ) ) e. _V |
| 12 |
4 11
|
eqeltri |
|- .0. e. _V |
| 13 |
12
|
elsn2 |
|- ( S e. { .0. } <-> S = .0. ) |
| 14 |
13
|
anbi2i |
|- ( ( F e. ( J ` X ) /\ S e. { .0. } ) <-> ( F e. ( J ` X ) /\ S = .0. ) ) |
| 15 |
9 14
|
bitri |
|- ( <. F , S >. e. ( ( J ` X ) X. { .0. } ) <-> ( F e. ( J ` X ) /\ S = .0. ) ) |
| 16 |
8 15
|
bitrdi |
|- ( ( ( K e. V /\ W e. H ) /\ X e. dom J ) -> ( <. F , S >. e. ( I ` X ) <-> ( F e. ( J ` X ) /\ S = .0. ) ) ) |