Step |
Hyp |
Ref |
Expression |
1 |
|
dibval.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
dibval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dibval.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
dibval.o |
⊢ 0 = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
5 |
|
dibval.j |
⊢ 𝐽 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
dibval.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
1 2
|
dibffval |
⊢ ( 𝐾 ∈ 𝑉 → ( DIsoB ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ dom ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( I ↾ 𝐵 ) ) } ) ) ) ) |
8 |
7
|
fveq1d |
⊢ ( 𝐾 ∈ 𝑉 → ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) = ( ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ dom ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( I ↾ 𝐵 ) ) } ) ) ) ‘ 𝑊 ) ) |
9 |
6 8
|
syl5eq |
⊢ ( 𝐾 ∈ 𝑉 → 𝐼 = ( ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ dom ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( I ↾ 𝐵 ) ) } ) ) ) ‘ 𝑊 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ) |
11 |
10 5
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) = 𝐽 ) |
12 |
11
|
dmeqd |
⊢ ( 𝑤 = 𝑊 → dom ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) = dom 𝐽 ) |
13 |
11
|
fveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) = ( 𝐽 ‘ 𝑥 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
15 |
14 3
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) = 𝑇 ) |
16 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → ( I ↾ 𝐵 ) = ( I ↾ 𝐵 ) ) |
17 |
15 16
|
mpteq12dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( I ↾ 𝐵 ) ) = ( 𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) ) |
18 |
17 4
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( I ↾ 𝐵 ) ) = 0 ) |
19 |
18
|
sneqd |
⊢ ( 𝑤 = 𝑊 → { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( I ↾ 𝐵 ) ) } = { 0 } ) |
20 |
13 19
|
xpeq12d |
⊢ ( 𝑤 = 𝑊 → ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( I ↾ 𝐵 ) ) } ) = ( ( 𝐽 ‘ 𝑥 ) × { 0 } ) ) |
21 |
12 20
|
mpteq12dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ∈ dom ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( I ↾ 𝐵 ) ) } ) ) = ( 𝑥 ∈ dom 𝐽 ↦ ( ( 𝐽 ‘ 𝑥 ) × { 0 } ) ) ) |
22 |
|
eqid |
⊢ ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ dom ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( I ↾ 𝐵 ) ) } ) ) ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ dom ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( I ↾ 𝐵 ) ) } ) ) ) |
23 |
5
|
fvexi |
⊢ 𝐽 ∈ V |
24 |
23
|
dmex |
⊢ dom 𝐽 ∈ V |
25 |
24
|
mptex |
⊢ ( 𝑥 ∈ dom 𝐽 ↦ ( ( 𝐽 ‘ 𝑥 ) × { 0 } ) ) ∈ V |
26 |
21 22 25
|
fvmpt |
⊢ ( 𝑊 ∈ 𝐻 → ( ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ dom ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑥 ) × { ( 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( I ↾ 𝐵 ) ) } ) ) ) ‘ 𝑊 ) = ( 𝑥 ∈ dom 𝐽 ↦ ( ( 𝐽 ‘ 𝑥 ) × { 0 } ) ) ) |
27 |
9 26
|
sylan9eq |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝐼 = ( 𝑥 ∈ dom 𝐽 ↦ ( ( 𝐽 ‘ 𝑥 ) × { 0 } ) ) ) |