| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dibval.b |
|- B = ( Base ` K ) |
| 2 |
|
dibval.h |
|- H = ( LHyp ` K ) |
| 3 |
|
dibval.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 4 |
|
dibval.o |
|- .0. = ( f e. T |-> ( _I |` B ) ) |
| 5 |
|
dibval.j |
|- J = ( ( DIsoA ` K ) ` W ) |
| 6 |
|
dibval.i |
|- I = ( ( DIsoB ` K ) ` W ) |
| 7 |
1 2
|
dibffval |
|- ( K e. V -> ( DIsoB ` K ) = ( w e. H |-> ( x e. dom ( ( DIsoA ` K ) ` w ) |-> ( ( ( ( DIsoA ` K ) ` w ) ` x ) X. { ( f e. ( ( LTrn ` K ) ` w ) |-> ( _I |` B ) ) } ) ) ) ) |
| 8 |
7
|
fveq1d |
|- ( K e. V -> ( ( DIsoB ` K ) ` W ) = ( ( w e. H |-> ( x e. dom ( ( DIsoA ` K ) ` w ) |-> ( ( ( ( DIsoA ` K ) ` w ) ` x ) X. { ( f e. ( ( LTrn ` K ) ` w ) |-> ( _I |` B ) ) } ) ) ) ` W ) ) |
| 9 |
6 8
|
eqtrid |
|- ( K e. V -> I = ( ( w e. H |-> ( x e. dom ( ( DIsoA ` K ) ` w ) |-> ( ( ( ( DIsoA ` K ) ` w ) ` x ) X. { ( f e. ( ( LTrn ` K ) ` w ) |-> ( _I |` B ) ) } ) ) ) ` W ) ) |
| 10 |
|
fveq2 |
|- ( w = W -> ( ( DIsoA ` K ) ` w ) = ( ( DIsoA ` K ) ` W ) ) |
| 11 |
10 5
|
eqtr4di |
|- ( w = W -> ( ( DIsoA ` K ) ` w ) = J ) |
| 12 |
11
|
dmeqd |
|- ( w = W -> dom ( ( DIsoA ` K ) ` w ) = dom J ) |
| 13 |
11
|
fveq1d |
|- ( w = W -> ( ( ( DIsoA ` K ) ` w ) ` x ) = ( J ` x ) ) |
| 14 |
|
fveq2 |
|- ( w = W -> ( ( LTrn ` K ) ` w ) = ( ( LTrn ` K ) ` W ) ) |
| 15 |
14 3
|
eqtr4di |
|- ( w = W -> ( ( LTrn ` K ) ` w ) = T ) |
| 16 |
|
eqidd |
|- ( w = W -> ( _I |` B ) = ( _I |` B ) ) |
| 17 |
15 16
|
mpteq12dv |
|- ( w = W -> ( f e. ( ( LTrn ` K ) ` w ) |-> ( _I |` B ) ) = ( f e. T |-> ( _I |` B ) ) ) |
| 18 |
17 4
|
eqtr4di |
|- ( w = W -> ( f e. ( ( LTrn ` K ) ` w ) |-> ( _I |` B ) ) = .0. ) |
| 19 |
18
|
sneqd |
|- ( w = W -> { ( f e. ( ( LTrn ` K ) ` w ) |-> ( _I |` B ) ) } = { .0. } ) |
| 20 |
13 19
|
xpeq12d |
|- ( w = W -> ( ( ( ( DIsoA ` K ) ` w ) ` x ) X. { ( f e. ( ( LTrn ` K ) ` w ) |-> ( _I |` B ) ) } ) = ( ( J ` x ) X. { .0. } ) ) |
| 21 |
12 20
|
mpteq12dv |
|- ( w = W -> ( x e. dom ( ( DIsoA ` K ) ` w ) |-> ( ( ( ( DIsoA ` K ) ` w ) ` x ) X. { ( f e. ( ( LTrn ` K ) ` w ) |-> ( _I |` B ) ) } ) ) = ( x e. dom J |-> ( ( J ` x ) X. { .0. } ) ) ) |
| 22 |
|
eqid |
|- ( w e. H |-> ( x e. dom ( ( DIsoA ` K ) ` w ) |-> ( ( ( ( DIsoA ` K ) ` w ) ` x ) X. { ( f e. ( ( LTrn ` K ) ` w ) |-> ( _I |` B ) ) } ) ) ) = ( w e. H |-> ( x e. dom ( ( DIsoA ` K ) ` w ) |-> ( ( ( ( DIsoA ` K ) ` w ) ` x ) X. { ( f e. ( ( LTrn ` K ) ` w ) |-> ( _I |` B ) ) } ) ) ) |
| 23 |
5
|
fvexi |
|- J e. _V |
| 24 |
23
|
dmex |
|- dom J e. _V |
| 25 |
24
|
mptex |
|- ( x e. dom J |-> ( ( J ` x ) X. { .0. } ) ) e. _V |
| 26 |
21 22 25
|
fvmpt |
|- ( W e. H -> ( ( w e. H |-> ( x e. dom ( ( DIsoA ` K ) ` w ) |-> ( ( ( ( DIsoA ` K ) ` w ) ` x ) X. { ( f e. ( ( LTrn ` K ) ` w ) |-> ( _I |` B ) ) } ) ) ) ` W ) = ( x e. dom J |-> ( ( J ` x ) X. { .0. } ) ) ) |
| 27 |
9 26
|
sylan9eq |
|- ( ( K e. V /\ W e. H ) -> I = ( x e. dom J |-> ( ( J ` x ) X. { .0. } ) ) ) |