Metamath Proof Explorer


Theorem diaeldm

Description: Member of domain of the partial isomorphism A. (Contributed by NM, 4-Dec-2013)

Ref Expression
Hypotheses diafn.b B = Base K
diafn.l ˙ = K
diafn.h H = LHyp K
diafn.i I = DIsoA K W
Assertion diaeldm K V W H X dom I X B X ˙ W

Proof

Step Hyp Ref Expression
1 diafn.b B = Base K
2 diafn.l ˙ = K
3 diafn.h H = LHyp K
4 diafn.i I = DIsoA K W
5 1 2 3 4 diadm K V W H dom I = x B | x ˙ W
6 5 eleq2d K V W H X dom I X x B | x ˙ W
7 breq1 x = X x ˙ W X ˙ W
8 7 elrab X x B | x ˙ W X B X ˙ W
9 6 8 bitrdi K V W H X dom I X B X ˙ W