Metamath Proof Explorer


Theorem diaeldm

Description: Member of domain of the partial isomorphism A. (Contributed by NM, 4-Dec-2013)

Ref Expression
Hypotheses diafn.b B=BaseK
diafn.l ˙=K
diafn.h H=LHypK
diafn.i I=DIsoAKW
Assertion diaeldm KVWHXdomIXBX˙W

Proof

Step Hyp Ref Expression
1 diafn.b B=BaseK
2 diafn.l ˙=K
3 diafn.h H=LHypK
4 diafn.i I=DIsoAKW
5 1 2 3 4 diadm KVWHdomI=xB|x˙W
6 5 eleq2d KVWHXdomIXxB|x˙W
7 breq1 x=Xx˙WX˙W
8 7 elrab XxB|x˙WXBX˙W
9 6 8 bitrdi KVWHXdomIXBX˙W