Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
diaeldm
Next ⟩
diadmclN
Metamath Proof Explorer
Ascii
Unicode
Theorem
diaeldm
Description:
Member of domain of the partial isomorphism A.
(Contributed by
NM
, 4-Dec-2013)
Ref
Expression
Hypotheses
diafn.b
⊢
B
=
Base
K
diafn.l
⊢
≤
˙
=
≤
K
diafn.h
⊢
H
=
LHyp
⁡
K
diafn.i
⊢
I
=
DIsoA
⁡
K
⁡
W
Assertion
diaeldm
⊢
K
∈
V
∧
W
∈
H
→
X
∈
dom
⁡
I
↔
X
∈
B
∧
X
≤
˙
W
Proof
Step
Hyp
Ref
Expression
1
diafn.b
⊢
B
=
Base
K
2
diafn.l
⊢
≤
˙
=
≤
K
3
diafn.h
⊢
H
=
LHyp
⁡
K
4
diafn.i
⊢
I
=
DIsoA
⁡
K
⁡
W
5
1
2
3
4
diadm
⊢
K
∈
V
∧
W
∈
H
→
dom
⁡
I
=
x
∈
B
|
x
≤
˙
W
6
5
eleq2d
⊢
K
∈
V
∧
W
∈
H
→
X
∈
dom
⁡
I
↔
X
∈
x
∈
B
|
x
≤
˙
W
7
breq1
⊢
x
=
X
→
x
≤
˙
W
↔
X
≤
˙
W
8
7
elrab
⊢
X
∈
x
∈
B
|
x
≤
˙
W
↔
X
∈
B
∧
X
≤
˙
W
9
6
8
bitrdi
⊢
K
∈
V
∧
W
∈
H
→
X
∈
dom
⁡
I
↔
X
∈
B
∧
X
≤
˙
W