Metamath Proof Explorer


Theorem diadmclN

Description: A member of domain of the partial isomorphism A is a lattice element. (Contributed by NM, 5-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses diadmcl.b B = Base K
diadmcl.h H = LHyp K
diadmcl.i I = DIsoA K W
Assertion diadmclN K V W H X dom I X B

Proof

Step Hyp Ref Expression
1 diadmcl.b B = Base K
2 diadmcl.h H = LHyp K
3 diadmcl.i I = DIsoA K W
4 eqid K = K
5 1 4 2 3 diaeldm K V W H X dom I X B X K W
6 5 simprbda K V W H X dom I X B