Metamath Proof Explorer


Theorem diadmleN

Description: A member of domain of the partial isomorphism A is under the fiducial hyperplane. (Contributed by NM, 5-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses diadmle.l ˙ = K
diadmle.h H = LHyp K
diadmle.i I = DIsoA K W
Assertion diadmleN K V W H X dom I X ˙ W

Proof

Step Hyp Ref Expression
1 diadmle.l ˙ = K
2 diadmle.h H = LHyp K
3 diadmle.i I = DIsoA K W
4 eqid Base K = Base K
5 4 1 2 3 diaeldm K V W H X dom I X Base K X ˙ W
6 5 simplbda K V W H X dom I X ˙ W