Metamath Proof Explorer


Definition df-disoa

Description: Define partial isomorphism A. (Contributed by NM, 15-Oct-2013)

Ref Expression
Assertion df-disoa DIsoA=kVwLHypkxyBasek|ykwfLTrnkw|trLkwfkx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdia classDIsoA
1 vk setvark
2 cvv classV
3 vw setvarw
4 clh classLHyp
5 1 cv setvark
6 5 4 cfv classLHypk
7 vx setvarx
8 vy setvary
9 cbs classBase
10 5 9 cfv classBasek
11 8 cv setvary
12 cple classle
13 5 12 cfv classk
14 3 cv setvarw
15 11 14 13 wbr wffykw
16 15 8 10 crab classyBasek|ykw
17 vf setvarf
18 cltrn classLTrn
19 5 18 cfv classLTrnk
20 14 19 cfv classLTrnkw
21 ctrl classtrL
22 5 21 cfv classtrLk
23 14 22 cfv classtrLkw
24 17 cv setvarf
25 24 23 cfv classtrLkwf
26 7 cv setvarx
27 25 26 13 wbr wfftrLkwfkx
28 27 17 20 crab classfLTrnkw|trLkwfkx
29 7 16 28 cmpt classxyBasek|ykwfLTrnkw|trLkwfkx
30 3 6 29 cmpt classwLHypkxyBasek|ykwfLTrnkw|trLkwfkx
31 1 2 30 cmpt classkVwLHypkxyBasek|ykwfLTrnkw|trLkwfkx
32 0 31 wceq wffDIsoA=kVwLHypkxyBasek|ykwfLTrnkw|trLkwfkx