Metamath Proof Explorer


Theorem diaffval

Description: The partial isomorphism A for a lattice K . (Contributed by NM, 15-Oct-2013)

Ref Expression
Hypotheses diaval.b B = Base K
diaval.l ˙ = K
diaval.h H = LHyp K
Assertion diaffval K V DIsoA K = w H x y B | y ˙ w f LTrn K w | trL K w f ˙ x

Proof

Step Hyp Ref Expression
1 diaval.b B = Base K
2 diaval.l ˙ = K
3 diaval.h H = LHyp K
4 elex K V K V
5 fveq2 k = K LHyp k = LHyp K
6 5 3 eqtr4di k = K LHyp k = H
7 fveq2 k = K Base k = Base K
8 7 1 eqtr4di k = K Base k = B
9 fveq2 k = K k = K
10 9 2 eqtr4di k = K k = ˙
11 10 breqd k = K y k w y ˙ w
12 8 11 rabeqbidv k = K y Base k | y k w = y B | y ˙ w
13 fveq2 k = K LTrn k = LTrn K
14 13 fveq1d k = K LTrn k w = LTrn K w
15 fveq2 k = K trL k = trL K
16 15 fveq1d k = K trL k w = trL K w
17 16 fveq1d k = K trL k w f = trL K w f
18 eqidd k = K x = x
19 17 10 18 breq123d k = K trL k w f k x trL K w f ˙ x
20 14 19 rabeqbidv k = K f LTrn k w | trL k w f k x = f LTrn K w | trL K w f ˙ x
21 12 20 mpteq12dv k = K x y Base k | y k w f LTrn k w | trL k w f k x = x y B | y ˙ w f LTrn K w | trL K w f ˙ x
22 6 21 mpteq12dv k = K w LHyp k x y Base k | y k w f LTrn k w | trL k w f k x = w H x y B | y ˙ w f LTrn K w | trL K w f ˙ x
23 df-disoa DIsoA = k V w LHyp k x y Base k | y k w f LTrn k w | trL k w f k x
24 22 23 3 mptfvmpt K V DIsoA K = w H x y B | y ˙ w f LTrn K w | trL K w f ˙ x
25 4 24 syl K V DIsoA K = w H x y B | y ˙ w f LTrn K w | trL K w f ˙ x