Step |
Hyp |
Ref |
Expression |
1 |
|
diaval.b |
|- B = ( Base ` K ) |
2 |
|
diaval.l |
|- .<_ = ( le ` K ) |
3 |
|
diaval.h |
|- H = ( LHyp ` K ) |
4 |
|
elex |
|- ( K e. V -> K e. _V ) |
5 |
|
fveq2 |
|- ( k = K -> ( LHyp ` k ) = ( LHyp ` K ) ) |
6 |
5 3
|
eqtr4di |
|- ( k = K -> ( LHyp ` k ) = H ) |
7 |
|
fveq2 |
|- ( k = K -> ( Base ` k ) = ( Base ` K ) ) |
8 |
7 1
|
eqtr4di |
|- ( k = K -> ( Base ` k ) = B ) |
9 |
|
fveq2 |
|- ( k = K -> ( le ` k ) = ( le ` K ) ) |
10 |
9 2
|
eqtr4di |
|- ( k = K -> ( le ` k ) = .<_ ) |
11 |
10
|
breqd |
|- ( k = K -> ( y ( le ` k ) w <-> y .<_ w ) ) |
12 |
8 11
|
rabeqbidv |
|- ( k = K -> { y e. ( Base ` k ) | y ( le ` k ) w } = { y e. B | y .<_ w } ) |
13 |
|
fveq2 |
|- ( k = K -> ( LTrn ` k ) = ( LTrn ` K ) ) |
14 |
13
|
fveq1d |
|- ( k = K -> ( ( LTrn ` k ) ` w ) = ( ( LTrn ` K ) ` w ) ) |
15 |
|
fveq2 |
|- ( k = K -> ( trL ` k ) = ( trL ` K ) ) |
16 |
15
|
fveq1d |
|- ( k = K -> ( ( trL ` k ) ` w ) = ( ( trL ` K ) ` w ) ) |
17 |
16
|
fveq1d |
|- ( k = K -> ( ( ( trL ` k ) ` w ) ` f ) = ( ( ( trL ` K ) ` w ) ` f ) ) |
18 |
|
eqidd |
|- ( k = K -> x = x ) |
19 |
17 10 18
|
breq123d |
|- ( k = K -> ( ( ( ( trL ` k ) ` w ) ` f ) ( le ` k ) x <-> ( ( ( trL ` K ) ` w ) ` f ) .<_ x ) ) |
20 |
14 19
|
rabeqbidv |
|- ( k = K -> { f e. ( ( LTrn ` k ) ` w ) | ( ( ( trL ` k ) ` w ) ` f ) ( le ` k ) x } = { f e. ( ( LTrn ` K ) ` w ) | ( ( ( trL ` K ) ` w ) ` f ) .<_ x } ) |
21 |
12 20
|
mpteq12dv |
|- ( k = K -> ( x e. { y e. ( Base ` k ) | y ( le ` k ) w } |-> { f e. ( ( LTrn ` k ) ` w ) | ( ( ( trL ` k ) ` w ) ` f ) ( le ` k ) x } ) = ( x e. { y e. B | y .<_ w } |-> { f e. ( ( LTrn ` K ) ` w ) | ( ( ( trL ` K ) ` w ) ` f ) .<_ x } ) ) |
22 |
6 21
|
mpteq12dv |
|- ( k = K -> ( w e. ( LHyp ` k ) |-> ( x e. { y e. ( Base ` k ) | y ( le ` k ) w } |-> { f e. ( ( LTrn ` k ) ` w ) | ( ( ( trL ` k ) ` w ) ` f ) ( le ` k ) x } ) ) = ( w e. H |-> ( x e. { y e. B | y .<_ w } |-> { f e. ( ( LTrn ` K ) ` w ) | ( ( ( trL ` K ) ` w ) ` f ) .<_ x } ) ) ) |
23 |
|
df-disoa |
|- DIsoA = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( x e. { y e. ( Base ` k ) | y ( le ` k ) w } |-> { f e. ( ( LTrn ` k ) ` w ) | ( ( ( trL ` k ) ` w ) ` f ) ( le ` k ) x } ) ) ) |
24 |
22 23 3
|
mptfvmpt |
|- ( K e. _V -> ( DIsoA ` K ) = ( w e. H |-> ( x e. { y e. B | y .<_ w } |-> { f e. ( ( LTrn ` K ) ` w ) | ( ( ( trL ` K ) ` w ) ` f ) .<_ x } ) ) ) |
25 |
4 24
|
syl |
|- ( K e. V -> ( DIsoA ` K ) = ( w e. H |-> ( x e. { y e. B | y .<_ w } |-> { f e. ( ( LTrn ` K ) ` w ) | ( ( ( trL ` K ) ` w ) ` f ) .<_ x } ) ) ) |