Step |
Hyp |
Ref |
Expression |
1 |
|
diaval.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
diaval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
diaval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
elex |
⊢ ( 𝐾 ∈ 𝑉 → 𝐾 ∈ V ) |
5 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = ( LHyp ‘ 𝐾 ) ) |
6 |
5 3
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = 𝐻 ) |
7 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = ( Base ‘ 𝐾 ) ) |
8 |
7 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = 𝐵 ) |
9 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ( le ‘ 𝐾 ) ) |
10 |
9 2
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ≤ ) |
11 |
10
|
breqd |
⊢ ( 𝑘 = 𝐾 → ( 𝑦 ( le ‘ 𝑘 ) 𝑤 ↔ 𝑦 ≤ 𝑤 ) ) |
12 |
8 11
|
rabeqbidv |
⊢ ( 𝑘 = 𝐾 → { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑦 ( le ‘ 𝑘 ) 𝑤 } = { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑤 } ) |
13 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( LTrn ‘ 𝑘 ) = ( LTrn ‘ 𝐾 ) ) |
14 |
13
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( trL ‘ 𝑘 ) = ( trL ‘ 𝐾 ) ) |
16 |
15
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ) |
17 |
16
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) = ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑓 ) ) |
18 |
|
eqidd |
⊢ ( 𝑘 = 𝐾 → 𝑥 = 𝑥 ) |
19 |
17 10 18
|
breq123d |
⊢ ( 𝑘 = 𝐾 → ( ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ( le ‘ 𝑘 ) 𝑥 ↔ ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑓 ) ≤ 𝑥 ) ) |
20 |
14 19
|
rabeqbidv |
⊢ ( 𝑘 = 𝐾 → { 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∣ ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ( le ‘ 𝑘 ) 𝑥 } = { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑓 ) ≤ 𝑥 } ) |
21 |
12 20
|
mpteq12dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑦 ( le ‘ 𝑘 ) 𝑤 } ↦ { 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∣ ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ( le ‘ 𝑘 ) 𝑥 } ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑤 } ↦ { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑓 ) ≤ 𝑥 } ) ) |
22 |
6 21
|
mpteq12dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑦 ( le ‘ 𝑘 ) 𝑤 } ↦ { 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∣ ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ( le ‘ 𝑘 ) 𝑥 } ) ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑤 } ↦ { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑓 ) ≤ 𝑥 } ) ) ) |
23 |
|
df-disoa |
⊢ DIsoA = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑦 ( le ‘ 𝑘 ) 𝑤 } ↦ { 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∣ ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ( le ‘ 𝑘 ) 𝑥 } ) ) ) |
24 |
22 23 3
|
mptfvmpt |
⊢ ( 𝐾 ∈ V → ( DIsoA ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑤 } ↦ { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑓 ) ≤ 𝑥 } ) ) ) |
25 |
4 24
|
syl |
⊢ ( 𝐾 ∈ 𝑉 → ( DIsoA ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑤 } ↦ { 𝑓 ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ∣ ( ( ( trL ‘ 𝐾 ) ‘ 𝑤 ) ‘ 𝑓 ) ≤ 𝑥 } ) ) ) |