Metamath Proof Explorer


Definition df-disoa

Description: Define partial isomorphism A. (Contributed by NM, 15-Oct-2013)

Ref Expression
Assertion df-disoa DIsoA = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑦 ( le ‘ 𝑘 ) 𝑤 } ↦ { 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∣ ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ( le ‘ 𝑘 ) 𝑥 } ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdia DIsoA
1 vk 𝑘
2 cvv V
3 vw 𝑤
4 clh LHyp
5 1 cv 𝑘
6 5 4 cfv ( LHyp ‘ 𝑘 )
7 vx 𝑥
8 vy 𝑦
9 cbs Base
10 5 9 cfv ( Base ‘ 𝑘 )
11 8 cv 𝑦
12 cple le
13 5 12 cfv ( le ‘ 𝑘 )
14 3 cv 𝑤
15 11 14 13 wbr 𝑦 ( le ‘ 𝑘 ) 𝑤
16 15 8 10 crab { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑦 ( le ‘ 𝑘 ) 𝑤 }
17 vf 𝑓
18 cltrn LTrn
19 5 18 cfv ( LTrn ‘ 𝑘 )
20 14 19 cfv ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 )
21 ctrl trL
22 5 21 cfv ( trL ‘ 𝑘 )
23 14 22 cfv ( ( trL ‘ 𝑘 ) ‘ 𝑤 )
24 17 cv 𝑓
25 24 23 cfv ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 )
26 7 cv 𝑥
27 25 26 13 wbr ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ( le ‘ 𝑘 ) 𝑥
28 27 17 20 crab { 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∣ ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ( le ‘ 𝑘 ) 𝑥 }
29 7 16 28 cmpt ( 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑦 ( le ‘ 𝑘 ) 𝑤 } ↦ { 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∣ ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ( le ‘ 𝑘 ) 𝑥 } )
30 3 6 29 cmpt ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑦 ( le ‘ 𝑘 ) 𝑤 } ↦ { 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∣ ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ( le ‘ 𝑘 ) 𝑥 } ) )
31 1 2 30 cmpt ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑦 ( le ‘ 𝑘 ) 𝑤 } ↦ { 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∣ ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ( le ‘ 𝑘 ) 𝑥 } ) ) )
32 0 31 wceq DIsoA = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑦 ( le ‘ 𝑘 ) 𝑤 } ↦ { 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∣ ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ( le ‘ 𝑘 ) 𝑥 } ) ) )