Step |
Hyp |
Ref |
Expression |
0 |
|
cdia |
⊢ DIsoA |
1 |
|
vk |
⊢ 𝑘 |
2 |
|
cvv |
⊢ V |
3 |
|
vw |
⊢ 𝑤 |
4 |
|
clh |
⊢ LHyp |
5 |
1
|
cv |
⊢ 𝑘 |
6 |
5 4
|
cfv |
⊢ ( LHyp ‘ 𝑘 ) |
7 |
|
vx |
⊢ 𝑥 |
8 |
|
vy |
⊢ 𝑦 |
9 |
|
cbs |
⊢ Base |
10 |
5 9
|
cfv |
⊢ ( Base ‘ 𝑘 ) |
11 |
8
|
cv |
⊢ 𝑦 |
12 |
|
cple |
⊢ le |
13 |
5 12
|
cfv |
⊢ ( le ‘ 𝑘 ) |
14 |
3
|
cv |
⊢ 𝑤 |
15 |
11 14 13
|
wbr |
⊢ 𝑦 ( le ‘ 𝑘 ) 𝑤 |
16 |
15 8 10
|
crab |
⊢ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑦 ( le ‘ 𝑘 ) 𝑤 } |
17 |
|
vf |
⊢ 𝑓 |
18 |
|
cltrn |
⊢ LTrn |
19 |
5 18
|
cfv |
⊢ ( LTrn ‘ 𝑘 ) |
20 |
14 19
|
cfv |
⊢ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) |
21 |
|
ctrl |
⊢ trL |
22 |
5 21
|
cfv |
⊢ ( trL ‘ 𝑘 ) |
23 |
14 22
|
cfv |
⊢ ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) |
24 |
17
|
cv |
⊢ 𝑓 |
25 |
24 23
|
cfv |
⊢ ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) |
26 |
7
|
cv |
⊢ 𝑥 |
27 |
25 26 13
|
wbr |
⊢ ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ( le ‘ 𝑘 ) 𝑥 |
28 |
27 17 20
|
crab |
⊢ { 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∣ ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ( le ‘ 𝑘 ) 𝑥 } |
29 |
7 16 28
|
cmpt |
⊢ ( 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑦 ( le ‘ 𝑘 ) 𝑤 } ↦ { 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∣ ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ( le ‘ 𝑘 ) 𝑥 } ) |
30 |
3 6 29
|
cmpt |
⊢ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑦 ( le ‘ 𝑘 ) 𝑤 } ↦ { 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∣ ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ( le ‘ 𝑘 ) 𝑥 } ) ) |
31 |
1 2 30
|
cmpt |
⊢ ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑦 ( le ‘ 𝑘 ) 𝑤 } ↦ { 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∣ ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ( le ‘ 𝑘 ) 𝑥 } ) ) ) |
32 |
0 31
|
wceq |
⊢ DIsoA = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝑘 ) ∣ 𝑦 ( le ‘ 𝑘 ) 𝑤 } ↦ { 𝑓 ∈ ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ∣ ( ( ( trL ‘ 𝑘 ) ‘ 𝑤 ) ‘ 𝑓 ) ( le ‘ 𝑘 ) 𝑥 } ) ) ) |