| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdia |
|- DIsoA |
| 1 |
|
vk |
|- k |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vw |
|- w |
| 4 |
|
clh |
|- LHyp |
| 5 |
1
|
cv |
|- k |
| 6 |
5 4
|
cfv |
|- ( LHyp ` k ) |
| 7 |
|
vx |
|- x |
| 8 |
|
vy |
|- y |
| 9 |
|
cbs |
|- Base |
| 10 |
5 9
|
cfv |
|- ( Base ` k ) |
| 11 |
8
|
cv |
|- y |
| 12 |
|
cple |
|- le |
| 13 |
5 12
|
cfv |
|- ( le ` k ) |
| 14 |
3
|
cv |
|- w |
| 15 |
11 14 13
|
wbr |
|- y ( le ` k ) w |
| 16 |
15 8 10
|
crab |
|- { y e. ( Base ` k ) | y ( le ` k ) w } |
| 17 |
|
vf |
|- f |
| 18 |
|
cltrn |
|- LTrn |
| 19 |
5 18
|
cfv |
|- ( LTrn ` k ) |
| 20 |
14 19
|
cfv |
|- ( ( LTrn ` k ) ` w ) |
| 21 |
|
ctrl |
|- trL |
| 22 |
5 21
|
cfv |
|- ( trL ` k ) |
| 23 |
14 22
|
cfv |
|- ( ( trL ` k ) ` w ) |
| 24 |
17
|
cv |
|- f |
| 25 |
24 23
|
cfv |
|- ( ( ( trL ` k ) ` w ) ` f ) |
| 26 |
7
|
cv |
|- x |
| 27 |
25 26 13
|
wbr |
|- ( ( ( trL ` k ) ` w ) ` f ) ( le ` k ) x |
| 28 |
27 17 20
|
crab |
|- { f e. ( ( LTrn ` k ) ` w ) | ( ( ( trL ` k ) ` w ) ` f ) ( le ` k ) x } |
| 29 |
7 16 28
|
cmpt |
|- ( x e. { y e. ( Base ` k ) | y ( le ` k ) w } |-> { f e. ( ( LTrn ` k ) ` w ) | ( ( ( trL ` k ) ` w ) ` f ) ( le ` k ) x } ) |
| 30 |
3 6 29
|
cmpt |
|- ( w e. ( LHyp ` k ) |-> ( x e. { y e. ( Base ` k ) | y ( le ` k ) w } |-> { f e. ( ( LTrn ` k ) ` w ) | ( ( ( trL ` k ) ` w ) ` f ) ( le ` k ) x } ) ) |
| 31 |
1 2 30
|
cmpt |
|- ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( x e. { y e. ( Base ` k ) | y ( le ` k ) w } |-> { f e. ( ( LTrn ` k ) ` w ) | ( ( ( trL ` k ) ` w ) ` f ) ( le ` k ) x } ) ) ) |
| 32 |
0 31
|
wceq |
|- DIsoA = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( x e. { y e. ( Base ` k ) | y ( le ` k ) w } |-> { f e. ( ( LTrn ` k ) ` w ) | ( ( ( trL ` k ) ` w ) ` f ) ( le ` k ) x } ) ) ) |