Metamath Proof Explorer


Theorem diafval

Description: The partial isomorphism A for a lattice K . (Contributed by NM, 15-Oct-2013)

Ref Expression
Hypotheses diaval.b
|- B = ( Base ` K )
diaval.l
|- .<_ = ( le ` K )
diaval.h
|- H = ( LHyp ` K )
diaval.t
|- T = ( ( LTrn ` K ) ` W )
diaval.r
|- R = ( ( trL ` K ) ` W )
diaval.i
|- I = ( ( DIsoA ` K ) ` W )
Assertion diafval
|- ( ( K e. V /\ W e. H ) -> I = ( x e. { y e. B | y .<_ W } |-> { f e. T | ( R ` f ) .<_ x } ) )

Proof

Step Hyp Ref Expression
1 diaval.b
 |-  B = ( Base ` K )
2 diaval.l
 |-  .<_ = ( le ` K )
3 diaval.h
 |-  H = ( LHyp ` K )
4 diaval.t
 |-  T = ( ( LTrn ` K ) ` W )
5 diaval.r
 |-  R = ( ( trL ` K ) ` W )
6 diaval.i
 |-  I = ( ( DIsoA ` K ) ` W )
7 1 2 3 diaffval
 |-  ( K e. V -> ( DIsoA ` K ) = ( w e. H |-> ( x e. { y e. B | y .<_ w } |-> { f e. ( ( LTrn ` K ) ` w ) | ( ( ( trL ` K ) ` w ) ` f ) .<_ x } ) ) )
8 7 fveq1d
 |-  ( K e. V -> ( ( DIsoA ` K ) ` W ) = ( ( w e. H |-> ( x e. { y e. B | y .<_ w } |-> { f e. ( ( LTrn ` K ) ` w ) | ( ( ( trL ` K ) ` w ) ` f ) .<_ x } ) ) ` W ) )
9 6 8 eqtrid
 |-  ( K e. V -> I = ( ( w e. H |-> ( x e. { y e. B | y .<_ w } |-> { f e. ( ( LTrn ` K ) ` w ) | ( ( ( trL ` K ) ` w ) ` f ) .<_ x } ) ) ` W ) )
10 breq2
 |-  ( w = W -> ( y .<_ w <-> y .<_ W ) )
11 10 rabbidv
 |-  ( w = W -> { y e. B | y .<_ w } = { y e. B | y .<_ W } )
12 fveq2
 |-  ( w = W -> ( ( LTrn ` K ) ` w ) = ( ( LTrn ` K ) ` W ) )
13 12 4 eqtr4di
 |-  ( w = W -> ( ( LTrn ` K ) ` w ) = T )
14 fveq2
 |-  ( w = W -> ( ( trL ` K ) ` w ) = ( ( trL ` K ) ` W ) )
15 14 5 eqtr4di
 |-  ( w = W -> ( ( trL ` K ) ` w ) = R )
16 15 fveq1d
 |-  ( w = W -> ( ( ( trL ` K ) ` w ) ` f ) = ( R ` f ) )
17 16 breq1d
 |-  ( w = W -> ( ( ( ( trL ` K ) ` w ) ` f ) .<_ x <-> ( R ` f ) .<_ x ) )
18 13 17 rabeqbidv
 |-  ( w = W -> { f e. ( ( LTrn ` K ) ` w ) | ( ( ( trL ` K ) ` w ) ` f ) .<_ x } = { f e. T | ( R ` f ) .<_ x } )
19 11 18 mpteq12dv
 |-  ( w = W -> ( x e. { y e. B | y .<_ w } |-> { f e. ( ( LTrn ` K ) ` w ) | ( ( ( trL ` K ) ` w ) ` f ) .<_ x } ) = ( x e. { y e. B | y .<_ W } |-> { f e. T | ( R ` f ) .<_ x } ) )
20 eqid
 |-  ( w e. H |-> ( x e. { y e. B | y .<_ w } |-> { f e. ( ( LTrn ` K ) ` w ) | ( ( ( trL ` K ) ` w ) ` f ) .<_ x } ) ) = ( w e. H |-> ( x e. { y e. B | y .<_ w } |-> { f e. ( ( LTrn ` K ) ` w ) | ( ( ( trL ` K ) ` w ) ` f ) .<_ x } ) )
21 1 fvexi
 |-  B e. _V
22 21 mptrabex
 |-  ( x e. { y e. B | y .<_ W } |-> { f e. T | ( R ` f ) .<_ x } ) e. _V
23 19 20 22 fvmpt
 |-  ( W e. H -> ( ( w e. H |-> ( x e. { y e. B | y .<_ w } |-> { f e. ( ( LTrn ` K ) ` w ) | ( ( ( trL ` K ) ` w ) ` f ) .<_ x } ) ) ` W ) = ( x e. { y e. B | y .<_ W } |-> { f e. T | ( R ` f ) .<_ x } ) )
24 9 23 sylan9eq
 |-  ( ( K e. V /\ W e. H ) -> I = ( x e. { y e. B | y .<_ W } |-> { f e. T | ( R ` f ) .<_ x } ) )