Step |
Hyp |
Ref |
Expression |
1 |
|
diaval.b |
|- B = ( Base ` K ) |
2 |
|
diaval.l |
|- .<_ = ( le ` K ) |
3 |
|
diaval.h |
|- H = ( LHyp ` K ) |
4 |
|
diaval.t |
|- T = ( ( LTrn ` K ) ` W ) |
5 |
|
diaval.r |
|- R = ( ( trL ` K ) ` W ) |
6 |
|
diaval.i |
|- I = ( ( DIsoA ` K ) ` W ) |
7 |
1 2 3
|
diaffval |
|- ( K e. V -> ( DIsoA ` K ) = ( w e. H |-> ( x e. { y e. B | y .<_ w } |-> { f e. ( ( LTrn ` K ) ` w ) | ( ( ( trL ` K ) ` w ) ` f ) .<_ x } ) ) ) |
8 |
7
|
fveq1d |
|- ( K e. V -> ( ( DIsoA ` K ) ` W ) = ( ( w e. H |-> ( x e. { y e. B | y .<_ w } |-> { f e. ( ( LTrn ` K ) ` w ) | ( ( ( trL ` K ) ` w ) ` f ) .<_ x } ) ) ` W ) ) |
9 |
6 8
|
eqtrid |
|- ( K e. V -> I = ( ( w e. H |-> ( x e. { y e. B | y .<_ w } |-> { f e. ( ( LTrn ` K ) ` w ) | ( ( ( trL ` K ) ` w ) ` f ) .<_ x } ) ) ` W ) ) |
10 |
|
breq2 |
|- ( w = W -> ( y .<_ w <-> y .<_ W ) ) |
11 |
10
|
rabbidv |
|- ( w = W -> { y e. B | y .<_ w } = { y e. B | y .<_ W } ) |
12 |
|
fveq2 |
|- ( w = W -> ( ( LTrn ` K ) ` w ) = ( ( LTrn ` K ) ` W ) ) |
13 |
12 4
|
eqtr4di |
|- ( w = W -> ( ( LTrn ` K ) ` w ) = T ) |
14 |
|
fveq2 |
|- ( w = W -> ( ( trL ` K ) ` w ) = ( ( trL ` K ) ` W ) ) |
15 |
14 5
|
eqtr4di |
|- ( w = W -> ( ( trL ` K ) ` w ) = R ) |
16 |
15
|
fveq1d |
|- ( w = W -> ( ( ( trL ` K ) ` w ) ` f ) = ( R ` f ) ) |
17 |
16
|
breq1d |
|- ( w = W -> ( ( ( ( trL ` K ) ` w ) ` f ) .<_ x <-> ( R ` f ) .<_ x ) ) |
18 |
13 17
|
rabeqbidv |
|- ( w = W -> { f e. ( ( LTrn ` K ) ` w ) | ( ( ( trL ` K ) ` w ) ` f ) .<_ x } = { f e. T | ( R ` f ) .<_ x } ) |
19 |
11 18
|
mpteq12dv |
|- ( w = W -> ( x e. { y e. B | y .<_ w } |-> { f e. ( ( LTrn ` K ) ` w ) | ( ( ( trL ` K ) ` w ) ` f ) .<_ x } ) = ( x e. { y e. B | y .<_ W } |-> { f e. T | ( R ` f ) .<_ x } ) ) |
20 |
|
eqid |
|- ( w e. H |-> ( x e. { y e. B | y .<_ w } |-> { f e. ( ( LTrn ` K ) ` w ) | ( ( ( trL ` K ) ` w ) ` f ) .<_ x } ) ) = ( w e. H |-> ( x e. { y e. B | y .<_ w } |-> { f e. ( ( LTrn ` K ) ` w ) | ( ( ( trL ` K ) ` w ) ` f ) .<_ x } ) ) |
21 |
1
|
fvexi |
|- B e. _V |
22 |
21
|
mptrabex |
|- ( x e. { y e. B | y .<_ W } |-> { f e. T | ( R ` f ) .<_ x } ) e. _V |
23 |
19 20 22
|
fvmpt |
|- ( W e. H -> ( ( w e. H |-> ( x e. { y e. B | y .<_ w } |-> { f e. ( ( LTrn ` K ) ` w ) | ( ( ( trL ` K ) ` w ) ` f ) .<_ x } ) ) ` W ) = ( x e. { y e. B | y .<_ W } |-> { f e. T | ( R ` f ) .<_ x } ) ) |
24 |
9 23
|
sylan9eq |
|- ( ( K e. V /\ W e. H ) -> I = ( x e. { y e. B | y .<_ W } |-> { f e. T | ( R ` f ) .<_ x } ) ) |