Metamath Proof Explorer


Theorem diafval

Description: The partial isomorphism A for a lattice K . (Contributed by NM, 15-Oct-2013)

Ref Expression
Hypotheses diaval.b B = Base K
diaval.l ˙ = K
diaval.h H = LHyp K
diaval.t T = LTrn K W
diaval.r R = trL K W
diaval.i I = DIsoA K W
Assertion diafval K V W H I = x y B | y ˙ W f T | R f ˙ x

Proof

Step Hyp Ref Expression
1 diaval.b B = Base K
2 diaval.l ˙ = K
3 diaval.h H = LHyp K
4 diaval.t T = LTrn K W
5 diaval.r R = trL K W
6 diaval.i I = DIsoA K W
7 1 2 3 diaffval K V DIsoA K = w H x y B | y ˙ w f LTrn K w | trL K w f ˙ x
8 7 fveq1d K V DIsoA K W = w H x y B | y ˙ w f LTrn K w | trL K w f ˙ x W
9 6 8 eqtrid K V I = w H x y B | y ˙ w f LTrn K w | trL K w f ˙ x W
10 breq2 w = W y ˙ w y ˙ W
11 10 rabbidv w = W y B | y ˙ w = y B | y ˙ W
12 fveq2 w = W LTrn K w = LTrn K W
13 12 4 eqtr4di w = W LTrn K w = T
14 fveq2 w = W trL K w = trL K W
15 14 5 eqtr4di w = W trL K w = R
16 15 fveq1d w = W trL K w f = R f
17 16 breq1d w = W trL K w f ˙ x R f ˙ x
18 13 17 rabeqbidv w = W f LTrn K w | trL K w f ˙ x = f T | R f ˙ x
19 11 18 mpteq12dv w = W x y B | y ˙ w f LTrn K w | trL K w f ˙ x = x y B | y ˙ W f T | R f ˙ x
20 eqid w H x y B | y ˙ w f LTrn K w | trL K w f ˙ x = w H x y B | y ˙ w f LTrn K w | trL K w f ˙ x
21 1 fvexi B V
22 21 mptrabex x y B | y ˙ W f T | R f ˙ x V
23 19 20 22 fvmpt W H w H x y B | y ˙ w f LTrn K w | trL K w f ˙ x W = x y B | y ˙ W f T | R f ˙ x
24 9 23 sylan9eq K V W H I = x y B | y ˙ W f T | R f ˙ x