Metamath Proof Explorer


Theorem diaval

Description: The partial isomorphism A for a lattice K . Definition of isomorphism map in Crawley p. 120 line 24. (Contributed by NM, 15-Oct-2013)

Ref Expression
Hypotheses diaval.b B = Base K
diaval.l ˙ = K
diaval.h H = LHyp K
diaval.t T = LTrn K W
diaval.r R = trL K W
diaval.i I = DIsoA K W
Assertion diaval K V W H X B X ˙ W I X = f T | R f ˙ X

Proof

Step Hyp Ref Expression
1 diaval.b B = Base K
2 diaval.l ˙ = K
3 diaval.h H = LHyp K
4 diaval.t T = LTrn K W
5 diaval.r R = trL K W
6 diaval.i I = DIsoA K W
7 1 2 3 4 5 6 diafval K V W H I = x y B | y ˙ W f T | R f ˙ x
8 7 adantr K V W H X B X ˙ W I = x y B | y ˙ W f T | R f ˙ x
9 8 fveq1d K V W H X B X ˙ W I X = x y B | y ˙ W f T | R f ˙ x X
10 simpr K V W H X B X ˙ W X B X ˙ W
11 breq1 y = X y ˙ W X ˙ W
12 11 elrab X y B | y ˙ W X B X ˙ W
13 10 12 sylibr K V W H X B X ˙ W X y B | y ˙ W
14 breq2 x = X R f ˙ x R f ˙ X
15 14 rabbidv x = X f T | R f ˙ x = f T | R f ˙ X
16 eqid x y B | y ˙ W f T | R f ˙ x = x y B | y ˙ W f T | R f ˙ x
17 4 fvexi T V
18 17 rabex f T | R f ˙ X V
19 15 16 18 fvmpt X y B | y ˙ W x y B | y ˙ W f T | R f ˙ x X = f T | R f ˙ X
20 13 19 syl K V W H X B X ˙ W x y B | y ˙ W f T | R f ˙ x X = f T | R f ˙ X
21 9 20 eqtrd K V W H X B X ˙ W I X = f T | R f ˙ X