Metamath Proof Explorer


Theorem diaval

Description: The partial isomorphism A for a lattice K . Definition of isomorphism map in Crawley p. 120 line 24. (Contributed by NM, 15-Oct-2013)

Ref Expression
Hypotheses diaval.b 𝐵 = ( Base ‘ 𝐾 )
diaval.l = ( le ‘ 𝐾 )
diaval.h 𝐻 = ( LHyp ‘ 𝐾 )
diaval.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
diaval.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
diaval.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
Assertion diaval ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) = { 𝑓𝑇 ∣ ( 𝑅𝑓 ) 𝑋 } )

Proof

Step Hyp Ref Expression
1 diaval.b 𝐵 = ( Base ‘ 𝐾 )
2 diaval.l = ( le ‘ 𝐾 )
3 diaval.h 𝐻 = ( LHyp ‘ 𝐾 )
4 diaval.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 diaval.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
6 diaval.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
7 1 2 3 4 5 6 diafval ( ( 𝐾𝑉𝑊𝐻 ) → 𝐼 = ( 𝑥 ∈ { 𝑦𝐵𝑦 𝑊 } ↦ { 𝑓𝑇 ∣ ( 𝑅𝑓 ) 𝑥 } ) )
8 7 adantr ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → 𝐼 = ( 𝑥 ∈ { 𝑦𝐵𝑦 𝑊 } ↦ { 𝑓𝑇 ∣ ( 𝑅𝑓 ) 𝑥 } ) )
9 8 fveq1d ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) = ( ( 𝑥 ∈ { 𝑦𝐵𝑦 𝑊 } ↦ { 𝑓𝑇 ∣ ( 𝑅𝑓 ) 𝑥 } ) ‘ 𝑋 ) )
10 simpr ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝑋𝐵𝑋 𝑊 ) )
11 breq1 ( 𝑦 = 𝑋 → ( 𝑦 𝑊𝑋 𝑊 ) )
12 11 elrab ( 𝑋 ∈ { 𝑦𝐵𝑦 𝑊 } ↔ ( 𝑋𝐵𝑋 𝑊 ) )
13 10 12 sylibr ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → 𝑋 ∈ { 𝑦𝐵𝑦 𝑊 } )
14 breq2 ( 𝑥 = 𝑋 → ( ( 𝑅𝑓 ) 𝑥 ↔ ( 𝑅𝑓 ) 𝑋 ) )
15 14 rabbidv ( 𝑥 = 𝑋 → { 𝑓𝑇 ∣ ( 𝑅𝑓 ) 𝑥 } = { 𝑓𝑇 ∣ ( 𝑅𝑓 ) 𝑋 } )
16 eqid ( 𝑥 ∈ { 𝑦𝐵𝑦 𝑊 } ↦ { 𝑓𝑇 ∣ ( 𝑅𝑓 ) 𝑥 } ) = ( 𝑥 ∈ { 𝑦𝐵𝑦 𝑊 } ↦ { 𝑓𝑇 ∣ ( 𝑅𝑓 ) 𝑥 } )
17 4 fvexi 𝑇 ∈ V
18 17 rabex { 𝑓𝑇 ∣ ( 𝑅𝑓 ) 𝑋 } ∈ V
19 15 16 18 fvmpt ( 𝑋 ∈ { 𝑦𝐵𝑦 𝑊 } → ( ( 𝑥 ∈ { 𝑦𝐵𝑦 𝑊 } ↦ { 𝑓𝑇 ∣ ( 𝑅𝑓 ) 𝑥 } ) ‘ 𝑋 ) = { 𝑓𝑇 ∣ ( 𝑅𝑓 ) 𝑋 } )
20 13 19 syl ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( ( 𝑥 ∈ { 𝑦𝐵𝑦 𝑊 } ↦ { 𝑓𝑇 ∣ ( 𝑅𝑓 ) 𝑥 } ) ‘ 𝑋 ) = { 𝑓𝑇 ∣ ( 𝑅𝑓 ) 𝑋 } )
21 9 20 eqtrd ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) = { 𝑓𝑇 ∣ ( 𝑅𝑓 ) 𝑋 } )