Step |
Hyp |
Ref |
Expression |
1 |
|
diaval.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
diaval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
diaval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
diaval.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
diaval.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
diaval.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
1 2 3 4 5 6
|
diafval |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝐼 = ( 𝑥 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊 } ↦ { 𝑓 ∈ 𝑇 ∣ ( 𝑅 ‘ 𝑓 ) ≤ 𝑥 } ) ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → 𝐼 = ( 𝑥 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊 } ↦ { 𝑓 ∈ 𝑇 ∣ ( 𝑅 ‘ 𝑓 ) ≤ 𝑥 } ) ) |
9 |
8
|
fveq1d |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) = ( ( 𝑥 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊 } ↦ { 𝑓 ∈ 𝑇 ∣ ( 𝑅 ‘ 𝑓 ) ≤ 𝑥 } ) ‘ 𝑋 ) ) |
10 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) |
11 |
|
breq1 |
⊢ ( 𝑦 = 𝑋 → ( 𝑦 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊 ) ) |
12 |
11
|
elrab |
⊢ ( 𝑋 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊 } ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) |
13 |
10 12
|
sylibr |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → 𝑋 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊 } ) |
14 |
|
breq2 |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑅 ‘ 𝑓 ) ≤ 𝑥 ↔ ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 ) ) |
15 |
14
|
rabbidv |
⊢ ( 𝑥 = 𝑋 → { 𝑓 ∈ 𝑇 ∣ ( 𝑅 ‘ 𝑓 ) ≤ 𝑥 } = { 𝑓 ∈ 𝑇 ∣ ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 } ) |
16 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊 } ↦ { 𝑓 ∈ 𝑇 ∣ ( 𝑅 ‘ 𝑓 ) ≤ 𝑥 } ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊 } ↦ { 𝑓 ∈ 𝑇 ∣ ( 𝑅 ‘ 𝑓 ) ≤ 𝑥 } ) |
17 |
4
|
fvexi |
⊢ 𝑇 ∈ V |
18 |
17
|
rabex |
⊢ { 𝑓 ∈ 𝑇 ∣ ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 } ∈ V |
19 |
15 16 18
|
fvmpt |
⊢ ( 𝑋 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊 } → ( ( 𝑥 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊 } ↦ { 𝑓 ∈ 𝑇 ∣ ( 𝑅 ‘ 𝑓 ) ≤ 𝑥 } ) ‘ 𝑋 ) = { 𝑓 ∈ 𝑇 ∣ ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 } ) |
20 |
13 19
|
syl |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( ( 𝑥 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑊 } ↦ { 𝑓 ∈ 𝑇 ∣ ( 𝑅 ‘ 𝑓 ) ≤ 𝑥 } ) ‘ 𝑋 ) = { 𝑓 ∈ 𝑇 ∣ ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 } ) |
21 |
9 20
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) = { 𝑓 ∈ 𝑇 ∣ ( 𝑅 ‘ 𝑓 ) ≤ 𝑋 } ) |