Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
diaelval
Next ⟩
diafn
Metamath Proof Explorer
Ascii
Unicode
Theorem
diaelval
Description:
Member of the partial isomorphism A for a lattice
K
.
(Contributed by
NM
, 3-Dec-2013)
Ref
Expression
Hypotheses
diaval.b
⊢
B
=
Base
K
diaval.l
⊢
≤
˙
=
≤
K
diaval.h
⊢
H
=
LHyp
⁡
K
diaval.t
⊢
T
=
LTrn
⁡
K
⁡
W
diaval.r
⊢
R
=
trL
⁡
K
⁡
W
diaval.i
⊢
I
=
DIsoA
⁡
K
⁡
W
Assertion
diaelval
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
F
∈
I
⁡
X
↔
F
∈
T
∧
R
⁡
F
≤
˙
X
Proof
Step
Hyp
Ref
Expression
1
diaval.b
⊢
B
=
Base
K
2
diaval.l
⊢
≤
˙
=
≤
K
3
diaval.h
⊢
H
=
LHyp
⁡
K
4
diaval.t
⊢
T
=
LTrn
⁡
K
⁡
W
5
diaval.r
⊢
R
=
trL
⁡
K
⁡
W
6
diaval.i
⊢
I
=
DIsoA
⁡
K
⁡
W
7
1
2
3
4
5
6
diaval
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
I
⁡
X
=
f
∈
T
|
R
⁡
f
≤
˙
X
8
7
eleq2d
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
F
∈
I
⁡
X
↔
F
∈
f
∈
T
|
R
⁡
f
≤
˙
X
9
fveq2
⊢
f
=
F
→
R
⁡
f
=
R
⁡
F
10
9
breq1d
⊢
f
=
F
→
R
⁡
f
≤
˙
X
↔
R
⁡
F
≤
˙
X
11
10
elrab
⊢
F
∈
f
∈
T
|
R
⁡
f
≤
˙
X
↔
F
∈
T
∧
R
⁡
F
≤
˙
X
12
8
11
bitrdi
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
F
∈
I
⁡
X
↔
F
∈
T
∧
R
⁡
F
≤
˙
X