Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
diafn
Next ⟩
diadm
Metamath Proof Explorer
Ascii
Unicode
Theorem
diafn
Description:
Functionality and domain of the partial isomorphism A.
(Contributed by
NM
, 26-Nov-2013)
Ref
Expression
Hypotheses
diafn.b
⊢
B
=
Base
K
diafn.l
⊢
≤
˙
=
≤
K
diafn.h
⊢
H
=
LHyp
⁡
K
diafn.i
⊢
I
=
DIsoA
⁡
K
⁡
W
Assertion
diafn
⊢
K
∈
V
∧
W
∈
H
→
I
Fn
x
∈
B
|
x
≤
˙
W
Proof
Step
Hyp
Ref
Expression
1
diafn.b
⊢
B
=
Base
K
2
diafn.l
⊢
≤
˙
=
≤
K
3
diafn.h
⊢
H
=
LHyp
⁡
K
4
diafn.i
⊢
I
=
DIsoA
⁡
K
⁡
W
5
fvex
⊢
LTrn
⁡
K
⁡
W
∈
V
6
5
rabex
⊢
f
∈
LTrn
⁡
K
⁡
W
|
trL
⁡
K
⁡
W
⁡
f
≤
˙
y
∈
V
7
eqid
⊢
y
∈
x
∈
B
|
x
≤
˙
W
⟼
f
∈
LTrn
⁡
K
⁡
W
|
trL
⁡
K
⁡
W
⁡
f
≤
˙
y
=
y
∈
x
∈
B
|
x
≤
˙
W
⟼
f
∈
LTrn
⁡
K
⁡
W
|
trL
⁡
K
⁡
W
⁡
f
≤
˙
y
8
6
7
fnmpti
⊢
y
∈
x
∈
B
|
x
≤
˙
W
⟼
f
∈
LTrn
⁡
K
⁡
W
|
trL
⁡
K
⁡
W
⁡
f
≤
˙
y
Fn
x
∈
B
|
x
≤
˙
W
9
eqid
⊢
LTrn
⁡
K
⁡
W
=
LTrn
⁡
K
⁡
W
10
eqid
⊢
trL
⁡
K
⁡
W
=
trL
⁡
K
⁡
W
11
1
2
3
9
10
4
diafval
⊢
K
∈
V
∧
W
∈
H
→
I
=
y
∈
x
∈
B
|
x
≤
˙
W
⟼
f
∈
LTrn
⁡
K
⁡
W
|
trL
⁡
K
⁡
W
⁡
f
≤
˙
y
12
11
fneq1d
⊢
K
∈
V
∧
W
∈
H
→
I
Fn
x
∈
B
|
x
≤
˙
W
↔
y
∈
x
∈
B
|
x
≤
˙
W
⟼
f
∈
LTrn
⁡
K
⁡
W
|
trL
⁡
K
⁡
W
⁡
f
≤
˙
y
Fn
x
∈
B
|
x
≤
˙
W
13
8
12
mpbiri
⊢
K
∈
V
∧
W
∈
H
→
I
Fn
x
∈
B
|
x
≤
˙
W