Metamath Proof Explorer


Theorem diafn

Description: Functionality and domain of the partial isomorphism A. (Contributed by NM, 26-Nov-2013)

Ref Expression
Hypotheses diafn.b B = Base K
diafn.l ˙ = K
diafn.h H = LHyp K
diafn.i I = DIsoA K W
Assertion diafn K V W H I Fn x B | x ˙ W

Proof

Step Hyp Ref Expression
1 diafn.b B = Base K
2 diafn.l ˙ = K
3 diafn.h H = LHyp K
4 diafn.i I = DIsoA K W
5 fvex LTrn K W V
6 5 rabex f LTrn K W | trL K W f ˙ y V
7 eqid y x B | x ˙ W f LTrn K W | trL K W f ˙ y = y x B | x ˙ W f LTrn K W | trL K W f ˙ y
8 6 7 fnmpti y x B | x ˙ W f LTrn K W | trL K W f ˙ y Fn x B | x ˙ W
9 eqid LTrn K W = LTrn K W
10 eqid trL K W = trL K W
11 1 2 3 9 10 4 diafval K V W H I = y x B | x ˙ W f LTrn K W | trL K W f ˙ y
12 11 fneq1d K V W H I Fn x B | x ˙ W y x B | x ˙ W f LTrn K W | trL K W f ˙ y Fn x B | x ˙ W
13 8 12 mpbiri K V W H I Fn x B | x ˙ W