Metamath Proof Explorer


Theorem diadm

Description: Domain of the partial isomorphism A. (Contributed by NM, 3-Dec-2013)

Ref Expression
Hypotheses diafn.b B = Base K
diafn.l ˙ = K
diafn.h H = LHyp K
diafn.i I = DIsoA K W
Assertion diadm K V W H dom I = x B | x ˙ W

Proof

Step Hyp Ref Expression
1 diafn.b B = Base K
2 diafn.l ˙ = K
3 diafn.h H = LHyp K
4 diafn.i I = DIsoA K W
5 1 2 3 4 diafn K V W H I Fn x B | x ˙ W
6 5 fndmd K V W H dom I = x B | x ˙ W