Metamath Proof Explorer


Theorem diadm

Description: Domain of the partial isomorphism A. (Contributed by NM, 3-Dec-2013)

Ref Expression
Hypotheses diafn.b 𝐵 = ( Base ‘ 𝐾 )
diafn.l = ( le ‘ 𝐾 )
diafn.h 𝐻 = ( LHyp ‘ 𝐾 )
diafn.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
Assertion diadm ( ( 𝐾𝑉𝑊𝐻 ) → dom 𝐼 = { 𝑥𝐵𝑥 𝑊 } )

Proof

Step Hyp Ref Expression
1 diafn.b 𝐵 = ( Base ‘ 𝐾 )
2 diafn.l = ( le ‘ 𝐾 )
3 diafn.h 𝐻 = ( LHyp ‘ 𝐾 )
4 diafn.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
5 1 2 3 4 diafn ( ( 𝐾𝑉𝑊𝐻 ) → 𝐼 Fn { 𝑥𝐵𝑥 𝑊 } )
6 5 fndmd ( ( 𝐾𝑉𝑊𝐻 ) → dom 𝐼 = { 𝑥𝐵𝑥 𝑊 } )