Description: Domain of the partial isomorphism A. (Contributed by NM, 3-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | diafn.b | |- B = ( Base ` K ) |
|
diafn.l | |- .<_ = ( le ` K ) |
||
diafn.h | |- H = ( LHyp ` K ) |
||
diafn.i | |- I = ( ( DIsoA ` K ) ` W ) |
||
Assertion | diadm | |- ( ( K e. V /\ W e. H ) -> dom I = { x e. B | x .<_ W } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diafn.b | |- B = ( Base ` K ) |
|
2 | diafn.l | |- .<_ = ( le ` K ) |
|
3 | diafn.h | |- H = ( LHyp ` K ) |
|
4 | diafn.i | |- I = ( ( DIsoA ` K ) ` W ) |
|
5 | 1 2 3 4 | diafn | |- ( ( K e. V /\ W e. H ) -> I Fn { x e. B | x .<_ W } ) |
6 | 5 | fndmd | |- ( ( K e. V /\ W e. H ) -> dom I = { x e. B | x .<_ W } ) |