Description: Domain of the partial isomorphism A. (Contributed by NM, 3-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diafn.b | |- B = ( Base ` K ) |
|
| diafn.l | |- .<_ = ( le ` K ) |
||
| diafn.h | |- H = ( LHyp ` K ) |
||
| diafn.i | |- I = ( ( DIsoA ` K ) ` W ) |
||
| Assertion | diadm | |- ( ( K e. V /\ W e. H ) -> dom I = { x e. B | x .<_ W } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diafn.b | |- B = ( Base ` K ) |
|
| 2 | diafn.l | |- .<_ = ( le ` K ) |
|
| 3 | diafn.h | |- H = ( LHyp ` K ) |
|
| 4 | diafn.i | |- I = ( ( DIsoA ` K ) ` W ) |
|
| 5 | 1 2 3 4 | diafn | |- ( ( K e. V /\ W e. H ) -> I Fn { x e. B | x .<_ W } ) |
| 6 | 5 | fndmd | |- ( ( K e. V /\ W e. H ) -> dom I = { x e. B | x .<_ W } ) |