Metamath Proof Explorer


Theorem diadm

Description: Domain of the partial isomorphism A. (Contributed by NM, 3-Dec-2013)

Ref Expression
Hypotheses diafn.b
|- B = ( Base ` K )
diafn.l
|- .<_ = ( le ` K )
diafn.h
|- H = ( LHyp ` K )
diafn.i
|- I = ( ( DIsoA ` K ) ` W )
Assertion diadm
|- ( ( K e. V /\ W e. H ) -> dom I = { x e. B | x .<_ W } )

Proof

Step Hyp Ref Expression
1 diafn.b
 |-  B = ( Base ` K )
2 diafn.l
 |-  .<_ = ( le ` K )
3 diafn.h
 |-  H = ( LHyp ` K )
4 diafn.i
 |-  I = ( ( DIsoA ` K ) ` W )
5 1 2 3 4 diafn
 |-  ( ( K e. V /\ W e. H ) -> I Fn { x e. B | x .<_ W } )
6 5 fndmd
 |-  ( ( K e. V /\ W e. H ) -> dom I = { x e. B | x .<_ W } )