Metamath Proof Explorer


Theorem dian0

Description: The value of the partial isomorphism A is not empty. (Contributed by NM, 17-Jan-2014)

Ref Expression
Hypotheses dian0.b B = Base K
dian0.l ˙ = K
dian0.h H = LHyp K
dian0.i I = DIsoA K W
Assertion dian0 K HL W H X B X ˙ W I X

Proof

Step Hyp Ref Expression
1 dian0.b B = Base K
2 dian0.l ˙ = K
3 dian0.h H = LHyp K
4 dian0.i I = DIsoA K W
5 eqid LTrn K W = LTrn K W
6 1 3 5 idltrn K HL W H I B LTrn K W
7 6 adantr K HL W H X B X ˙ W I B LTrn K W
8 eqid 0. K = 0. K
9 eqid trL K W = trL K W
10 1 8 3 9 trlid0 K HL W H trL K W I B = 0. K
11 10 adantr K HL W H X B X ˙ W trL K W I B = 0. K
12 hlatl K HL K AtLat
13 12 adantr K HL W H K AtLat
14 simpl X B X ˙ W X B
15 1 2 8 atl0le K AtLat X B 0. K ˙ X
16 13 14 15 syl2an K HL W H X B X ˙ W 0. K ˙ X
17 11 16 eqbrtrd K HL W H X B X ˙ W trL K W I B ˙ X
18 1 2 3 5 9 4 diaelval K HL W H X B X ˙ W I B I X I B LTrn K W trL K W I B ˙ X
19 7 17 18 mpbir2and K HL W H X B X ˙ W I B I X
20 19 ne0d K HL W H X B X ˙ W I X