| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dian0.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dian0.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
dian0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
dian0.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
1 3 5
|
idltrn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝐵 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( I ↾ 𝐵 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 8 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
| 9 |
|
eqid |
⊢ ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
| 10 |
1 8 3 9
|
trlid0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( I ↾ 𝐵 ) ) = ( 0. ‘ 𝐾 ) ) |
| 11 |
10
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( I ↾ 𝐵 ) ) = ( 0. ‘ 𝐾 ) ) |
| 12 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐾 ∈ AtLat ) |
| 14 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) → 𝑋 ∈ 𝐵 ) |
| 15 |
1 2 8
|
atl0le |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ) → ( 0. ‘ 𝐾 ) ≤ 𝑋 ) |
| 16 |
13 14 15
|
syl2an |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 0. ‘ 𝐾 ) ≤ 𝑋 ) |
| 17 |
11 16
|
eqbrtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( I ↾ 𝐵 ) ) ≤ 𝑋 ) |
| 18 |
1 2 3 5 9 4
|
diaelval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( ( I ↾ 𝐵 ) ∈ ( 𝐼 ‘ 𝑋 ) ↔ ( ( I ↾ 𝐵 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( I ↾ 𝐵 ) ) ≤ 𝑋 ) ) ) |
| 19 |
7 17 18
|
mpbir2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( I ↾ 𝐵 ) ∈ ( 𝐼 ‘ 𝑋 ) ) |
| 20 |
19
|
ne0d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) ≠ ∅ ) |