Metamath Proof Explorer


Theorem dian0

Description: The value of the partial isomorphism A is not empty. (Contributed by NM, 17-Jan-2014)

Ref Expression
Hypotheses dian0.b 𝐵 = ( Base ‘ 𝐾 )
dian0.l = ( le ‘ 𝐾 )
dian0.h 𝐻 = ( LHyp ‘ 𝐾 )
dian0.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
Assertion dian0 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) ≠ ∅ )

Proof

Step Hyp Ref Expression
1 dian0.b 𝐵 = ( Base ‘ 𝐾 )
2 dian0.l = ( le ‘ 𝐾 )
3 dian0.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dian0.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
5 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 1 3 5 idltrn ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( I ↾ 𝐵 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
7 6 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( I ↾ 𝐵 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) )
8 eqid ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 )
9 eqid ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
10 1 8 3 9 trlid0 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( I ↾ 𝐵 ) ) = ( 0. ‘ 𝐾 ) )
11 10 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( I ↾ 𝐵 ) ) = ( 0. ‘ 𝐾 ) )
12 hlatl ( 𝐾 ∈ HL → 𝐾 ∈ AtLat )
13 12 adantr ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐾 ∈ AtLat )
14 simpl ( ( 𝑋𝐵𝑋 𝑊 ) → 𝑋𝐵 )
15 1 2 8 atl0le ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐵 ) → ( 0. ‘ 𝐾 ) 𝑋 )
16 13 14 15 syl2an ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 0. ‘ 𝐾 ) 𝑋 )
17 11 16 eqbrtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( I ↾ 𝐵 ) ) 𝑋 )
18 1 2 3 5 9 4 diaelval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( ( I ↾ 𝐵 ) ∈ ( 𝐼𝑋 ) ↔ ( ( I ↾ 𝐵 ) ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( I ↾ 𝐵 ) ) 𝑋 ) ) )
19 7 17 18 mpbir2and ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( I ↾ 𝐵 ) ∈ ( 𝐼𝑋 ) )
20 19 ne0d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) ≠ ∅ )