Step |
Hyp |
Ref |
Expression |
1 |
|
dia0eldm.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
2 |
|
dia0eldm.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
3 |
|
dia0eldm.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
5 |
4
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝐾 ∈ OP ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
7 |
6 1
|
op0cl |
⊢ ( 𝐾 ∈ OP → 0 ∈ ( Base ‘ 𝐾 ) ) |
8 |
5 7
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 0 ∈ ( Base ‘ 𝐾 ) ) |
9 |
6 2
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
10 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
11 |
6 10 1
|
op0le |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → 0 ( le ‘ 𝐾 ) 𝑊 ) |
12 |
4 9 11
|
syl2an |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 0 ( le ‘ 𝐾 ) 𝑊 ) |
13 |
6 10 2 3
|
diaeldm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 0 ∈ dom 𝐼 ↔ ( 0 ∈ ( Base ‘ 𝐾 ) ∧ 0 ( le ‘ 𝐾 ) 𝑊 ) ) ) |
14 |
8 12 13
|
mpbir2and |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 0 ∈ dom 𝐼 ) |