Metamath Proof Explorer


Theorem dia0eldmN

Description: The lattice zero belongs to the domain of partial isomorphism A. (Contributed by NM, 5-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dia0eldm.z 0 = ( 0. ‘ 𝐾 )
dia0eldm.h 𝐻 = ( LHyp ‘ 𝐾 )
dia0eldm.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
Assertion dia0eldmN ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 0 ∈ dom 𝐼 )

Proof

Step Hyp Ref Expression
1 dia0eldm.z 0 = ( 0. ‘ 𝐾 )
2 dia0eldm.h 𝐻 = ( LHyp ‘ 𝐾 )
3 dia0eldm.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
4 hlop ( 𝐾 ∈ HL → 𝐾 ∈ OP )
5 4 adantr ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝐾 ∈ OP )
6 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
7 6 1 op0cl ( 𝐾 ∈ OP → 0 ∈ ( Base ‘ 𝐾 ) )
8 5 7 syl ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 0 ∈ ( Base ‘ 𝐾 ) )
9 6 2 lhpbase ( 𝑊𝐻𝑊 ∈ ( Base ‘ 𝐾 ) )
10 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
11 6 10 1 op0le ( ( 𝐾 ∈ OP ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → 0 ( le ‘ 𝐾 ) 𝑊 )
12 4 9 11 syl2an ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 0 ( le ‘ 𝐾 ) 𝑊 )
13 6 10 2 3 diaeldm ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 0 ∈ dom 𝐼 ↔ ( 0 ∈ ( Base ‘ 𝐾 ) ∧ 0 ( le ‘ 𝐾 ) 𝑊 ) ) )
14 8 12 13 mpbir2and ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 0 ∈ dom 𝐼 )