Step |
Hyp |
Ref |
Expression |
1 |
|
dia0eldm.z |
|- .0. = ( 0. ` K ) |
2 |
|
dia0eldm.h |
|- H = ( LHyp ` K ) |
3 |
|
dia0eldm.i |
|- I = ( ( DIsoA ` K ) ` W ) |
4 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
5 |
4
|
adantr |
|- ( ( K e. HL /\ W e. H ) -> K e. OP ) |
6 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
7 |
6 1
|
op0cl |
|- ( K e. OP -> .0. e. ( Base ` K ) ) |
8 |
5 7
|
syl |
|- ( ( K e. HL /\ W e. H ) -> .0. e. ( Base ` K ) ) |
9 |
6 2
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
10 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
11 |
6 10 1
|
op0le |
|- ( ( K e. OP /\ W e. ( Base ` K ) ) -> .0. ( le ` K ) W ) |
12 |
4 9 11
|
syl2an |
|- ( ( K e. HL /\ W e. H ) -> .0. ( le ` K ) W ) |
13 |
6 10 2 3
|
diaeldm |
|- ( ( K e. HL /\ W e. H ) -> ( .0. e. dom I <-> ( .0. e. ( Base ` K ) /\ .0. ( le ` K ) W ) ) ) |
14 |
8 12 13
|
mpbir2and |
|- ( ( K e. HL /\ W e. H ) -> .0. e. dom I ) |