Metamath Proof Explorer


Theorem dia0eldmN

Description: The lattice zero belongs to the domain of partial isomorphism A. (Contributed by NM, 5-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dia0eldm.z
|- .0. = ( 0. ` K )
dia0eldm.h
|- H = ( LHyp ` K )
dia0eldm.i
|- I = ( ( DIsoA ` K ) ` W )
Assertion dia0eldmN
|- ( ( K e. HL /\ W e. H ) -> .0. e. dom I )

Proof

Step Hyp Ref Expression
1 dia0eldm.z
 |-  .0. = ( 0. ` K )
2 dia0eldm.h
 |-  H = ( LHyp ` K )
3 dia0eldm.i
 |-  I = ( ( DIsoA ` K ) ` W )
4 hlop
 |-  ( K e. HL -> K e. OP )
5 4 adantr
 |-  ( ( K e. HL /\ W e. H ) -> K e. OP )
6 eqid
 |-  ( Base ` K ) = ( Base ` K )
7 6 1 op0cl
 |-  ( K e. OP -> .0. e. ( Base ` K ) )
8 5 7 syl
 |-  ( ( K e. HL /\ W e. H ) -> .0. e. ( Base ` K ) )
9 6 2 lhpbase
 |-  ( W e. H -> W e. ( Base ` K ) )
10 eqid
 |-  ( le ` K ) = ( le ` K )
11 6 10 1 op0le
 |-  ( ( K e. OP /\ W e. ( Base ` K ) ) -> .0. ( le ` K ) W )
12 4 9 11 syl2an
 |-  ( ( K e. HL /\ W e. H ) -> .0. ( le ` K ) W )
13 6 10 2 3 diaeldm
 |-  ( ( K e. HL /\ W e. H ) -> ( .0. e. dom I <-> ( .0. e. ( Base ` K ) /\ .0. ( le ` K ) W ) ) )
14 8 12 13 mpbir2and
 |-  ( ( K e. HL /\ W e. H ) -> .0. e. dom I )