| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dia1eldm.h |
|- H = ( LHyp ` K ) |
| 2 |
|
dia1eldm.i |
|- I = ( ( DIsoA ` K ) ` W ) |
| 3 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 4 |
3 1
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 5 |
4
|
adantl |
|- ( ( K e. HL /\ W e. H ) -> W e. ( Base ` K ) ) |
| 6 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 7 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 8 |
3 7
|
latref |
|- ( ( K e. Lat /\ W e. ( Base ` K ) ) -> W ( le ` K ) W ) |
| 9 |
6 4 8
|
syl2an |
|- ( ( K e. HL /\ W e. H ) -> W ( le ` K ) W ) |
| 10 |
3 7 1 2
|
diaeldm |
|- ( ( K e. HL /\ W e. H ) -> ( W e. dom I <-> ( W e. ( Base ` K ) /\ W ( le ` K ) W ) ) ) |
| 11 |
5 9 10
|
mpbir2and |
|- ( ( K e. HL /\ W e. H ) -> W e. dom I ) |