Metamath Proof Explorer


Theorem dia1eldmN

Description: The fiducial hyperplane (the largest allowed lattice element) belongs to the domain of partial isomorphism A. (Contributed by NM, 5-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dia1eldm.h H = LHyp K
dia1eldm.i I = DIsoA K W
Assertion dia1eldmN K HL W H W dom I

Proof

Step Hyp Ref Expression
1 dia1eldm.h H = LHyp K
2 dia1eldm.i I = DIsoA K W
3 eqid Base K = Base K
4 3 1 lhpbase W H W Base K
5 4 adantl K HL W H W Base K
6 hllat K HL K Lat
7 eqid K = K
8 3 7 latref K Lat W Base K W K W
9 6 4 8 syl2an K HL W H W K W
10 3 7 1 2 diaeldm K HL W H W dom I W Base K W K W
11 5 9 10 mpbir2and K HL W H W dom I