Metamath Proof Explorer


Theorem diass

Description: The value of the partial isomorphism A is a set of translations, i.e., a set of vectors. (Contributed by NM, 26-Nov-2013)

Ref Expression
Hypotheses diass.b B=BaseK
diass.l ˙=K
diass.h H=LHypK
diass.t T=LTrnKW
diass.i I=DIsoAKW
Assertion diass KVWHXBX˙WIXT

Proof

Step Hyp Ref Expression
1 diass.b B=BaseK
2 diass.l ˙=K
3 diass.h H=LHypK
4 diass.t T=LTrnKW
5 diass.i I=DIsoAKW
6 eqid trLKW=trLKW
7 1 2 3 4 6 5 diaval KVWHXBX˙WIX=fT|trLKWf˙X
8 ssrab2 fT|trLKWf˙XT
9 7 8 eqsstrdi KVWHXBX˙WIXT