| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diass.b |
|- B = ( Base ` K ) |
| 2 |
|
diass.l |
|- .<_ = ( le ` K ) |
| 3 |
|
diass.h |
|- H = ( LHyp ` K ) |
| 4 |
|
diass.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 5 |
|
diass.i |
|- I = ( ( DIsoA ` K ) ` W ) |
| 6 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
| 7 |
1 2 3 4 6 5
|
diaval |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) = { f e. T | ( ( ( trL ` K ) ` W ) ` f ) .<_ X } ) |
| 8 |
|
ssrab2 |
|- { f e. T | ( ( ( trL ` K ) ` W ) ` f ) .<_ X } C_ T |
| 9 |
7 8
|
eqsstrdi |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) C_ T ) |