Metamath Proof Explorer


Theorem dia0eldmN

Description: The lattice zero belongs to the domain of partial isomorphism A. (Contributed by NM, 5-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dia0eldm.z 0 ˙ = 0. K
dia0eldm.h H = LHyp K
dia0eldm.i I = DIsoA K W
Assertion dia0eldmN K HL W H 0 ˙ dom I

Proof

Step Hyp Ref Expression
1 dia0eldm.z 0 ˙ = 0. K
2 dia0eldm.h H = LHyp K
3 dia0eldm.i I = DIsoA K W
4 hlop K HL K OP
5 4 adantr K HL W H K OP
6 eqid Base K = Base K
7 6 1 op0cl K OP 0 ˙ Base K
8 5 7 syl K HL W H 0 ˙ Base K
9 6 2 lhpbase W H W Base K
10 eqid K = K
11 6 10 1 op0le K OP W Base K 0 ˙ K W
12 4 9 11 syl2an K HL W H 0 ˙ K W
13 6 10 2 3 diaeldm K HL W H 0 ˙ dom I 0 ˙ Base K 0 ˙ K W
14 8 12 13 mpbir2and K HL W H 0 ˙ dom I