Description: A member of domain of the partial isomorphism A is a lattice element. (Contributed by NM, 5-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diadmcl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| diadmcl.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | ||
| diadmcl.i | ⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) | ||
| Assertion | diadmclN | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ dom 𝐼 ) → 𝑋 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diadmcl.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | diadmcl.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
| 3 | diadmcl.i | ⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 5 | 1 4 2 3 | diaeldm | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝑋 ∈ dom 𝐼 ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ( le ‘ 𝐾 ) 𝑊 ) ) ) |
| 6 | 5 | simprbda | ⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ dom 𝐼 ) → 𝑋 ∈ 𝐵 ) |