Metamath Proof Explorer


Theorem dibopelval2

Description: Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses dibval2.b B = Base K
dibval2.l ˙ = K
dibval2.h H = LHyp K
dibval2.t T = LTrn K W
dibval2.o 0 ˙ = f T I B
dibval2.j J = DIsoA K W
dibval2.i I = DIsoB K W
Assertion dibopelval2 K V W H X B X ˙ W F S I X F J X S = 0 ˙

Proof

Step Hyp Ref Expression
1 dibval2.b B = Base K
2 dibval2.l ˙ = K
3 dibval2.h H = LHyp K
4 dibval2.t T = LTrn K W
5 dibval2.o 0 ˙ = f T I B
6 dibval2.j J = DIsoA K W
7 dibval2.i I = DIsoB K W
8 1 2 3 4 5 6 7 dibval2 K V W H X B X ˙ W I X = J X × 0 ˙
9 8 eleq2d K V W H X B X ˙ W F S I X F S J X × 0 ˙
10 opelxp F S J X × 0 ˙ F J X S 0 ˙
11 4 fvexi T V
12 11 mptex f T I B V
13 5 12 eqeltri 0 ˙ V
14 13 elsn2 S 0 ˙ S = 0 ˙
15 14 anbi2i F J X S 0 ˙ F J X S = 0 ˙
16 10 15 bitri F S J X × 0 ˙ F J X S = 0 ˙
17 9 16 bitrdi K V W H X B X ˙ W F S I X F J X S = 0 ˙