Metamath Proof Explorer


Theorem dibval3N

Description: Value of the partial isomorphism B for a lattice K . (Contributed by NM, 24-Feb-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dibval3.b B = Base K
dibval3.l ˙ = K
dibval3.h H = LHyp K
dibval3.t T = LTrn K W
dibval3.r R = trL K W
dibval3.o 0 ˙ = g T I B
dibval3.i I = DIsoB K W
Assertion dibval3N K V W H X B X ˙ W I X = f T | R f ˙ X × 0 ˙

Proof

Step Hyp Ref Expression
1 dibval3.b B = Base K
2 dibval3.l ˙ = K
3 dibval3.h H = LHyp K
4 dibval3.t T = LTrn K W
5 dibval3.r R = trL K W
6 dibval3.o 0 ˙ = g T I B
7 dibval3.i I = DIsoB K W
8 eqid DIsoA K W = DIsoA K W
9 1 2 3 4 6 8 7 dibval2 K V W H X B X ˙ W I X = DIsoA K W X × 0 ˙
10 1 2 3 4 5 8 diaval K V W H X B X ˙ W DIsoA K W X = f T | R f ˙ X
11 10 xpeq1d K V W H X B X ˙ W DIsoA K W X × 0 ˙ = f T | R f ˙ X × 0 ˙
12 9 11 eqtrd K V W H X B X ˙ W I X = f T | R f ˙ X × 0 ˙