| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dibval3.b |
|- B = ( Base ` K ) |
| 2 |
|
dibval3.l |
|- .<_ = ( le ` K ) |
| 3 |
|
dibval3.h |
|- H = ( LHyp ` K ) |
| 4 |
|
dibval3.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 5 |
|
dibval3.r |
|- R = ( ( trL ` K ) ` W ) |
| 6 |
|
dibval3.o |
|- .0. = ( g e. T |-> ( _I |` B ) ) |
| 7 |
|
dibval3.i |
|- I = ( ( DIsoB ` K ) ` W ) |
| 8 |
|
eqid |
|- ( ( DIsoA ` K ) ` W ) = ( ( DIsoA ` K ) ` W ) |
| 9 |
1 2 3 4 6 8 7
|
dibval2 |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) = ( ( ( ( DIsoA ` K ) ` W ) ` X ) X. { .0. } ) ) |
| 10 |
1 2 3 4 5 8
|
diaval |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( ( ( DIsoA ` K ) ` W ) ` X ) = { f e. T | ( R ` f ) .<_ X } ) |
| 11 |
10
|
xpeq1d |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( ( ( ( DIsoA ` K ) ` W ) ` X ) X. { .0. } ) = ( { f e. T | ( R ` f ) .<_ X } X. { .0. } ) ) |
| 12 |
9 11
|
eqtrd |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) = ( { f e. T | ( R ` f ) .<_ X } X. { .0. } ) ) |