Step |
Hyp |
Ref |
Expression |
1 |
|
dibval3.b |
|- B = ( Base ` K ) |
2 |
|
dibval3.l |
|- .<_ = ( le ` K ) |
3 |
|
dibval3.h |
|- H = ( LHyp ` K ) |
4 |
|
dibval3.t |
|- T = ( ( LTrn ` K ) ` W ) |
5 |
|
dibval3.r |
|- R = ( ( trL ` K ) ` W ) |
6 |
|
dibval3.o |
|- .0. = ( g e. T |-> ( _I |` B ) ) |
7 |
|
dibval3.i |
|- I = ( ( DIsoB ` K ) ` W ) |
8 |
|
eqid |
|- ( ( DIsoA ` K ) ` W ) = ( ( DIsoA ` K ) ` W ) |
9 |
1 2 3 4 6 8 7
|
dibval2 |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) = ( ( ( ( DIsoA ` K ) ` W ) ` X ) X. { .0. } ) ) |
10 |
9
|
eleq2d |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( Y e. ( I ` X ) <-> Y e. ( ( ( ( DIsoA ` K ) ` W ) ` X ) X. { .0. } ) ) ) |
11 |
1 2 3 4 5 8
|
diaelval |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( f e. ( ( ( DIsoA ` K ) ` W ) ` X ) <-> ( f e. T /\ ( R ` f ) .<_ X ) ) ) |
12 |
11
|
anbi1d |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( ( f e. ( ( ( DIsoA ` K ) ` W ) ` X ) /\ Y = <. f , .0. >. ) <-> ( ( f e. T /\ ( R ` f ) .<_ X ) /\ Y = <. f , .0. >. ) ) ) |
13 |
|
an13 |
|- ( ( Y = <. f , s >. /\ ( f e. ( ( ( DIsoA ` K ) ` W ) ` X ) /\ s e. { .0. } ) ) <-> ( s e. { .0. } /\ ( f e. ( ( ( DIsoA ` K ) ` W ) ` X ) /\ Y = <. f , s >. ) ) ) |
14 |
|
velsn |
|- ( s e. { .0. } <-> s = .0. ) |
15 |
14
|
anbi1i |
|- ( ( s e. { .0. } /\ ( f e. ( ( ( DIsoA ` K ) ` W ) ` X ) /\ Y = <. f , s >. ) ) <-> ( s = .0. /\ ( f e. ( ( ( DIsoA ` K ) ` W ) ` X ) /\ Y = <. f , s >. ) ) ) |
16 |
13 15
|
bitri |
|- ( ( Y = <. f , s >. /\ ( f e. ( ( ( DIsoA ` K ) ` W ) ` X ) /\ s e. { .0. } ) ) <-> ( s = .0. /\ ( f e. ( ( ( DIsoA ` K ) ` W ) ` X ) /\ Y = <. f , s >. ) ) ) |
17 |
16
|
exbii |
|- ( E. s ( Y = <. f , s >. /\ ( f e. ( ( ( DIsoA ` K ) ` W ) ` X ) /\ s e. { .0. } ) ) <-> E. s ( s = .0. /\ ( f e. ( ( ( DIsoA ` K ) ` W ) ` X ) /\ Y = <. f , s >. ) ) ) |
18 |
4
|
fvexi |
|- T e. _V |
19 |
18
|
mptex |
|- ( g e. T |-> ( _I |` B ) ) e. _V |
20 |
6 19
|
eqeltri |
|- .0. e. _V |
21 |
|
opeq2 |
|- ( s = .0. -> <. f , s >. = <. f , .0. >. ) |
22 |
21
|
eqeq2d |
|- ( s = .0. -> ( Y = <. f , s >. <-> Y = <. f , .0. >. ) ) |
23 |
22
|
anbi2d |
|- ( s = .0. -> ( ( f e. ( ( ( DIsoA ` K ) ` W ) ` X ) /\ Y = <. f , s >. ) <-> ( f e. ( ( ( DIsoA ` K ) ` W ) ` X ) /\ Y = <. f , .0. >. ) ) ) |
24 |
20 23
|
ceqsexv |
|- ( E. s ( s = .0. /\ ( f e. ( ( ( DIsoA ` K ) ` W ) ` X ) /\ Y = <. f , s >. ) ) <-> ( f e. ( ( ( DIsoA ` K ) ` W ) ` X ) /\ Y = <. f , .0. >. ) ) |
25 |
17 24
|
bitri |
|- ( E. s ( Y = <. f , s >. /\ ( f e. ( ( ( DIsoA ` K ) ` W ) ` X ) /\ s e. { .0. } ) ) <-> ( f e. ( ( ( DIsoA ` K ) ` W ) ` X ) /\ Y = <. f , .0. >. ) ) |
26 |
|
anass |
|- ( ( ( f e. T /\ Y = <. f , .0. >. ) /\ ( R ` f ) .<_ X ) <-> ( f e. T /\ ( Y = <. f , .0. >. /\ ( R ` f ) .<_ X ) ) ) |
27 |
|
an32 |
|- ( ( ( f e. T /\ Y = <. f , .0. >. ) /\ ( R ` f ) .<_ X ) <-> ( ( f e. T /\ ( R ` f ) .<_ X ) /\ Y = <. f , .0. >. ) ) |
28 |
26 27
|
bitr3i |
|- ( ( f e. T /\ ( Y = <. f , .0. >. /\ ( R ` f ) .<_ X ) ) <-> ( ( f e. T /\ ( R ` f ) .<_ X ) /\ Y = <. f , .0. >. ) ) |
29 |
12 25 28
|
3bitr4g |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( E. s ( Y = <. f , s >. /\ ( f e. ( ( ( DIsoA ` K ) ` W ) ` X ) /\ s e. { .0. } ) ) <-> ( f e. T /\ ( Y = <. f , .0. >. /\ ( R ` f ) .<_ X ) ) ) ) |
30 |
29
|
exbidv |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( E. f E. s ( Y = <. f , s >. /\ ( f e. ( ( ( DIsoA ` K ) ` W ) ` X ) /\ s e. { .0. } ) ) <-> E. f ( f e. T /\ ( Y = <. f , .0. >. /\ ( R ` f ) .<_ X ) ) ) ) |
31 |
|
elxp |
|- ( Y e. ( ( ( ( DIsoA ` K ) ` W ) ` X ) X. { .0. } ) <-> E. f E. s ( Y = <. f , s >. /\ ( f e. ( ( ( DIsoA ` K ) ` W ) ` X ) /\ s e. { .0. } ) ) ) |
32 |
|
df-rex |
|- ( E. f e. T ( Y = <. f , .0. >. /\ ( R ` f ) .<_ X ) <-> E. f ( f e. T /\ ( Y = <. f , .0. >. /\ ( R ` f ) .<_ X ) ) ) |
33 |
30 31 32
|
3bitr4g |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( Y e. ( ( ( ( DIsoA ` K ) ` W ) ` X ) X. { .0. } ) <-> E. f e. T ( Y = <. f , .0. >. /\ ( R ` f ) .<_ X ) ) ) |
34 |
10 33
|
bitrd |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( Y e. ( I ` X ) <-> E. f e. T ( Y = <. f , .0. >. /\ ( R ` f ) .<_ X ) ) ) |