Step |
Hyp |
Ref |
Expression |
1 |
|
dibval3.b |
|- B = ( Base ` K ) |
2 |
|
dibval3.l |
|- .<_ = ( le ` K ) |
3 |
|
dibval3.h |
|- H = ( LHyp ` K ) |
4 |
|
dibval3.t |
|- T = ( ( LTrn ` K ) ` W ) |
5 |
|
dibval3.r |
|- R = ( ( trL ` K ) ` W ) |
6 |
|
dibval3.o |
|- .0. = ( g e. T |-> ( _I |` B ) ) |
7 |
|
dibval3.i |
|- I = ( ( DIsoB ` K ) ` W ) |
8 |
|
eqid |
|- ( ( DIsoA ` K ) ` W ) = ( ( DIsoA ` K ) ` W ) |
9 |
1 2 3 4 6 8 7
|
dibopelval2 |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( <. F , S >. e. ( I ` X ) <-> ( F e. ( ( ( DIsoA ` K ) ` W ) ` X ) /\ S = .0. ) ) ) |
10 |
1 2 3 4 5 8
|
diaelval |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( F e. ( ( ( DIsoA ` K ) ` W ) ` X ) <-> ( F e. T /\ ( R ` F ) .<_ X ) ) ) |
11 |
10
|
anbi1d |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( ( F e. ( ( ( DIsoA ` K ) ` W ) ` X ) /\ S = .0. ) <-> ( ( F e. T /\ ( R ` F ) .<_ X ) /\ S = .0. ) ) ) |
12 |
9 11
|
bitrd |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( <. F , S >. e. ( I ` X ) <-> ( ( F e. T /\ ( R ` F ) .<_ X ) /\ S = .0. ) ) ) |