Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dibopelval3
Next ⟩
dibelval1st
Metamath Proof Explorer
Ascii
Unicode
Theorem
dibopelval3
Description:
Member of the partial isomorphism B.
(Contributed by
NM
, 3-Mar-2014)
Ref
Expression
Hypotheses
dibval3.b
⊢
B
=
Base
K
dibval3.l
⊢
≤
˙
=
≤
K
dibval3.h
⊢
H
=
LHyp
⁡
K
dibval3.t
⊢
T
=
LTrn
⁡
K
⁡
W
dibval3.r
⊢
R
=
trL
⁡
K
⁡
W
dibval3.o
⊢
0
˙
=
g
∈
T
⟼
I
↾
B
dibval3.i
⊢
I
=
DIsoB
⁡
K
⁡
W
Assertion
dibopelval3
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
F
S
∈
I
⁡
X
↔
F
∈
T
∧
R
⁡
F
≤
˙
X
∧
S
=
0
˙
Proof
Step
Hyp
Ref
Expression
1
dibval3.b
⊢
B
=
Base
K
2
dibval3.l
⊢
≤
˙
=
≤
K
3
dibval3.h
⊢
H
=
LHyp
⁡
K
4
dibval3.t
⊢
T
=
LTrn
⁡
K
⁡
W
5
dibval3.r
⊢
R
=
trL
⁡
K
⁡
W
6
dibval3.o
⊢
0
˙
=
g
∈
T
⟼
I
↾
B
7
dibval3.i
⊢
I
=
DIsoB
⁡
K
⁡
W
8
eqid
⊢
DIsoA
⁡
K
⁡
W
=
DIsoA
⁡
K
⁡
W
9
1
2
3
4
6
8
7
dibopelval2
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
F
S
∈
I
⁡
X
↔
F
∈
DIsoA
⁡
K
⁡
W
⁡
X
∧
S
=
0
˙
10
1
2
3
4
5
8
diaelval
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
F
∈
DIsoA
⁡
K
⁡
W
⁡
X
↔
F
∈
T
∧
R
⁡
F
≤
˙
X
11
10
anbi1d
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
F
∈
DIsoA
⁡
K
⁡
W
⁡
X
∧
S
=
0
˙
↔
F
∈
T
∧
R
⁡
F
≤
˙
X
∧
S
=
0
˙
12
9
11
bitrd
⊢
K
∈
V
∧
W
∈
H
∧
X
∈
B
∧
X
≤
˙
W
→
F
S
∈
I
⁡
X
↔
F
∈
T
∧
R
⁡
F
≤
˙
X
∧
S
=
0
˙