Metamath Proof Explorer


Theorem dibopelval3

Description: Member of the partial isomorphism B. (Contributed by NM, 3-Mar-2014)

Ref Expression
Hypotheses dibval3.b B = Base K
dibval3.l ˙ = K
dibval3.h H = LHyp K
dibval3.t T = LTrn K W
dibval3.r R = trL K W
dibval3.o 0 ˙ = g T I B
dibval3.i I = DIsoB K W
Assertion dibopelval3 K V W H X B X ˙ W F S I X F T R F ˙ X S = 0 ˙

Proof

Step Hyp Ref Expression
1 dibval3.b B = Base K
2 dibval3.l ˙ = K
3 dibval3.h H = LHyp K
4 dibval3.t T = LTrn K W
5 dibval3.r R = trL K W
6 dibval3.o 0 ˙ = g T I B
7 dibval3.i I = DIsoB K W
8 eqid DIsoA K W = DIsoA K W
9 1 2 3 4 6 8 7 dibopelval2 K V W H X B X ˙ W F S I X F DIsoA K W X S = 0 ˙
10 1 2 3 4 5 8 diaelval K V W H X B X ˙ W F DIsoA K W X F T R F ˙ X
11 10 anbi1d K V W H X B X ˙ W F DIsoA K W X S = 0 ˙ F T R F ˙ X S = 0 ˙
12 9 11 bitrd K V W H X B X ˙ W F S I X F T R F ˙ X S = 0 ˙