Metamath Proof Explorer


Theorem dibelval1st

Description: Membership in value of the partial isomorphism B for a lattice K . (Contributed by NM, 13-Feb-2014)

Ref Expression
Hypotheses dibelval1.b B = Base K
dibelval1.l ˙ = K
dibelval1.h H = LHyp K
dibelval1.j J = DIsoA K W
dibelval1.i I = DIsoB K W
Assertion dibelval1st K V W H X B X ˙ W Y I X 1 st Y J X

Proof

Step Hyp Ref Expression
1 dibelval1.b B = Base K
2 dibelval1.l ˙ = K
3 dibelval1.h H = LHyp K
4 dibelval1.j J = DIsoA K W
5 dibelval1.i I = DIsoB K W
6 eqid LTrn K W = LTrn K W
7 eqid f LTrn K W I B = f LTrn K W I B
8 1 2 3 6 7 4 5 dibval2 K V W H X B X ˙ W I X = J X × f LTrn K W I B
9 8 eleq2d K V W H X B X ˙ W Y I X Y J X × f LTrn K W I B
10 9 biimp3a K V W H X B X ˙ W Y I X Y J X × f LTrn K W I B
11 xp1st Y J X × f LTrn K W I B 1 st Y J X
12 10 11 syl K V W H X B X ˙ W Y I X 1 st Y J X