Metamath Proof Explorer


Theorem dibelval1st1

Description: Membership in value of the partial isomorphism B for a lattice K . (Contributed by NM, 13-Feb-2014)

Ref Expression
Hypotheses dibelval1st1.b B=BaseK
dibelval1st1.l ˙=K
dibelval1st1.h H=LHypK
dibelval1st1.t T=LTrnKW
dibelval1st1.i I=DIsoBKW
Assertion dibelval1st1 KVWHXBX˙WYIX1stYT

Proof

Step Hyp Ref Expression
1 dibelval1st1.b B=BaseK
2 dibelval1st1.l ˙=K
3 dibelval1st1.h H=LHypK
4 dibelval1st1.t T=LTrnKW
5 dibelval1st1.i I=DIsoBKW
6 eqid DIsoAKW=DIsoAKW
7 1 2 3 6 5 dibelval1st KVWHXBX˙WYIX1stYDIsoAKWX
8 1 2 3 4 6 diael KVWHXBX˙W1stYDIsoAKWX1stYT
9 7 8 syld3an3 KVWHXBX˙WYIX1stYT