Metamath Proof Explorer


Theorem dibelval1st1

Description: Membership in value of the partial isomorphism B for a lattice K . (Contributed by NM, 13-Feb-2014)

Ref Expression
Hypotheses dibelval1st1.b B = Base K
dibelval1st1.l ˙ = K
dibelval1st1.h H = LHyp K
dibelval1st1.t T = LTrn K W
dibelval1st1.i I = DIsoB K W
Assertion dibelval1st1 K V W H X B X ˙ W Y I X 1 st Y T

Proof

Step Hyp Ref Expression
1 dibelval1st1.b B = Base K
2 dibelval1st1.l ˙ = K
3 dibelval1st1.h H = LHyp K
4 dibelval1st1.t T = LTrn K W
5 dibelval1st1.i I = DIsoB K W
6 eqid DIsoA K W = DIsoA K W
7 1 2 3 6 5 dibelval1st K V W H X B X ˙ W Y I X 1 st Y DIsoA K W X
8 1 2 3 4 6 diael K V W H X B X ˙ W 1 st Y DIsoA K W X 1 st Y T
9 7 8 syld3an3 K V W H X B X ˙ W Y I X 1 st Y T