Step |
Hyp |
Ref |
Expression |
1 |
|
dibelval1st1.b |
|- B = ( Base ` K ) |
2 |
|
dibelval1st1.l |
|- .<_ = ( le ` K ) |
3 |
|
dibelval1st1.h |
|- H = ( LHyp ` K ) |
4 |
|
dibelval1st1.t |
|- T = ( ( LTrn ` K ) ` W ) |
5 |
|
dibelval1st1.i |
|- I = ( ( DIsoB ` K ) ` W ) |
6 |
|
eqid |
|- ( ( DIsoA ` K ) ` W ) = ( ( DIsoA ` K ) ` W ) |
7 |
1 2 3 6 5
|
dibelval1st |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ Y e. ( I ` X ) ) -> ( 1st ` Y ) e. ( ( ( DIsoA ` K ) ` W ) ` X ) ) |
8 |
1 2 3 4 6
|
diael |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ ( 1st ` Y ) e. ( ( ( DIsoA ` K ) ` W ) ` X ) ) -> ( 1st ` Y ) e. T ) |
9 |
7 8
|
syld3an3 |
|- ( ( ( K e. V /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ Y e. ( I ` X ) ) -> ( 1st ` Y ) e. T ) |