| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dibelval1st1.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dibelval1st1.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
dibelval1st1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
dibelval1st1.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
dibelval1st1.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
1 2 3 6 5
|
dibelval1st |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ ( 𝐼 ‘ 𝑋 ) ) → ( 1st ‘ 𝑌 ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ) |
| 8 |
1 2 3 4 6
|
diael |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ ( 1st ‘ 𝑌 ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ) → ( 1st ‘ 𝑌 ) ∈ 𝑇 ) |
| 9 |
7 8
|
syld3an3 |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ 𝑌 ∈ ( 𝐼 ‘ 𝑋 ) ) → ( 1st ‘ 𝑌 ) ∈ 𝑇 ) |