Metamath Proof Explorer


Theorem dibelval1st1

Description: Membership in value of the partial isomorphism B for a lattice K . (Contributed by NM, 13-Feb-2014)

Ref Expression
Hypotheses dibelval1st1.b 𝐵 = ( Base ‘ 𝐾 )
dibelval1st1.l = ( le ‘ 𝐾 )
dibelval1st1.h 𝐻 = ( LHyp ‘ 𝐾 )
dibelval1st1.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
dibelval1st1.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
Assertion dibelval1st1 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ 𝑌 ∈ ( 𝐼𝑋 ) ) → ( 1st𝑌 ) ∈ 𝑇 )

Proof

Step Hyp Ref Expression
1 dibelval1st1.b 𝐵 = ( Base ‘ 𝐾 )
2 dibelval1st1.l = ( le ‘ 𝐾 )
3 dibelval1st1.h 𝐻 = ( LHyp ‘ 𝐾 )
4 dibelval1st1.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 dibelval1st1.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
6 eqid ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
7 1 2 3 6 5 dibelval1st ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ 𝑌 ∈ ( 𝐼𝑋 ) ) → ( 1st𝑌 ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) )
8 1 2 3 4 6 diael ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ ( 1st𝑌 ) ∈ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑋 ) ) → ( 1st𝑌 ) ∈ 𝑇 )
9 7 8 syld3an3 ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ 𝑌 ∈ ( 𝐼𝑋 ) ) → ( 1st𝑌 ) ∈ 𝑇 )