Metamath Proof Explorer


Theorem diael

Description: A member of the value of the partial isomorphism A is a translation, i.e., a vector. (Contributed by NM, 17-Jan-2014)

Ref Expression
Hypotheses diass.b 𝐵 = ( Base ‘ 𝐾 )
diass.l = ( le ‘ 𝐾 )
diass.h 𝐻 = ( LHyp ‘ 𝐾 )
diass.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
diass.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
Assertion diael ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ 𝐹 ∈ ( 𝐼𝑋 ) ) → 𝐹𝑇 )

Proof

Step Hyp Ref Expression
1 diass.b 𝐵 = ( Base ‘ 𝐾 )
2 diass.l = ( le ‘ 𝐾 )
3 diass.h 𝐻 = ( LHyp ‘ 𝐾 )
4 diass.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 diass.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
6 1 2 3 4 5 diass ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) ⊆ 𝑇 )
7 6 sseld ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐹 ∈ ( 𝐼𝑋 ) → 𝐹𝑇 ) )
8 7 3impia ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ 𝐹 ∈ ( 𝐼𝑋 ) ) → 𝐹𝑇 )