Metamath Proof Explorer


Theorem diatrl

Description: Trace of a member of the partial isomorphism A. (Contributed by NM, 17-Jan-2014)

Ref Expression
Hypotheses diatrl.b 𝐵 = ( Base ‘ 𝐾 )
diatrl.l = ( le ‘ 𝐾 )
diatrl.h 𝐻 = ( LHyp ‘ 𝐾 )
diatrl.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
diatrl.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
diatrl.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
Assertion diatrl ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ 𝐹 ∈ ( 𝐼𝑋 ) ) → ( 𝑅𝐹 ) 𝑋 )

Proof

Step Hyp Ref Expression
1 diatrl.b 𝐵 = ( Base ‘ 𝐾 )
2 diatrl.l = ( le ‘ 𝐾 )
3 diatrl.h 𝐻 = ( LHyp ‘ 𝐾 )
4 diatrl.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 diatrl.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
6 diatrl.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
7 1 2 3 4 5 6 diaelval ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐹 ∈ ( 𝐼𝑋 ) ↔ ( 𝐹𝑇 ∧ ( 𝑅𝐹 ) 𝑋 ) ) )
8 simpr ( ( 𝐹𝑇 ∧ ( 𝑅𝐹 ) 𝑋 ) → ( 𝑅𝐹 ) 𝑋 )
9 7 8 syl6bi ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐹 ∈ ( 𝐼𝑋 ) → ( 𝑅𝐹 ) 𝑋 ) )
10 9 3impia ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ∧ 𝐹 ∈ ( 𝐼𝑋 ) ) → ( 𝑅𝐹 ) 𝑋 )