Step |
Hyp |
Ref |
Expression |
1 |
|
diatrl.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
diatrl.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
diatrl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
diatrl.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
diatrl.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
diatrl.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
1 2 3 4 5 6
|
diaelval |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐹 ∈ ( 𝐼 ‘ 𝑋 ) ↔ ( 𝐹 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) ≤ 𝑋 ) ) ) |
8 |
|
simpr |
⊢ ( ( 𝐹 ∈ 𝑇 ∧ ( 𝑅 ‘ 𝐹 ) ≤ 𝑋 ) → ( 𝑅 ‘ 𝐹 ) ≤ 𝑋 ) |
9 |
7 8
|
syl6bi |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐹 ∈ ( 𝐼 ‘ 𝑋 ) → ( 𝑅 ‘ 𝐹 ) ≤ 𝑋 ) ) |
10 |
9
|
3impia |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ∧ 𝐹 ∈ ( 𝐼 ‘ 𝑋 ) ) → ( 𝑅 ‘ 𝐹 ) ≤ 𝑋 ) |