| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diaelrn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
diaelrn.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
diaelrn.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 5 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 6 |
4 5 1 3
|
diafn |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝐼 Fn { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑦 ( le ‘ 𝐾 ) 𝑊 } ) |
| 7 |
|
fvelrnb |
⊢ ( 𝐼 Fn { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑦 ( le ‘ 𝐾 ) 𝑊 } → ( 𝑆 ∈ ran 𝐼 ↔ ∃ 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑦 ( le ‘ 𝐾 ) 𝑊 } ( 𝐼 ‘ 𝑥 ) = 𝑆 ) ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝑆 ∈ ran 𝐼 ↔ ∃ 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑦 ( le ‘ 𝐾 ) 𝑊 } ( 𝐼 ‘ 𝑥 ) = 𝑆 ) ) |
| 9 |
|
breq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ( le ‘ 𝐾 ) 𝑊 ↔ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) ) |
| 10 |
9
|
elrab |
⊢ ( 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑦 ( le ‘ 𝐾 ) 𝑊 } ↔ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) ) |
| 11 |
4 5 1 2 3
|
diass |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐼 ‘ 𝑥 ) ⊆ 𝑇 ) |
| 12 |
11
|
ex |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) → ( 𝐼 ‘ 𝑥 ) ⊆ 𝑇 ) ) |
| 13 |
|
sseq1 |
⊢ ( ( 𝐼 ‘ 𝑥 ) = 𝑆 → ( ( 𝐼 ‘ 𝑥 ) ⊆ 𝑇 ↔ 𝑆 ⊆ 𝑇 ) ) |
| 14 |
13
|
biimpcd |
⊢ ( ( 𝐼 ‘ 𝑥 ) ⊆ 𝑇 → ( ( 𝐼 ‘ 𝑥 ) = 𝑆 → 𝑆 ⊆ 𝑇 ) ) |
| 15 |
12 14
|
syl6 |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) → ( ( 𝐼 ‘ 𝑥 ) = 𝑆 → 𝑆 ⊆ 𝑇 ) ) ) |
| 16 |
10 15
|
biimtrid |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑦 ( le ‘ 𝐾 ) 𝑊 } → ( ( 𝐼 ‘ 𝑥 ) = 𝑆 → 𝑆 ⊆ 𝑇 ) ) ) |
| 17 |
16
|
rexlimdv |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( ∃ 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑦 ( le ‘ 𝐾 ) 𝑊 } ( 𝐼 ‘ 𝑥 ) = 𝑆 → 𝑆 ⊆ 𝑇 ) ) |
| 18 |
8 17
|
sylbid |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → ( 𝑆 ∈ ran 𝐼 → 𝑆 ⊆ 𝑇 ) ) |
| 19 |
18
|
imp |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑆 ∈ ran 𝐼 ) → 𝑆 ⊆ 𝑇 ) |