Metamath Proof Explorer


Theorem diaelrnN

Description: Any value of the partial isomorphism A is a set of translations i.e. a set of vectors. (Contributed by NM, 26-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses diaelrn.h 𝐻 = ( LHyp ‘ 𝐾 )
diaelrn.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
diaelrn.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
Assertion diaelrnN ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑆 ∈ ran 𝐼 ) → 𝑆𝑇 )

Proof

Step Hyp Ref Expression
1 diaelrn.h 𝐻 = ( LHyp ‘ 𝐾 )
2 diaelrn.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 diaelrn.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
4 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
5 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
6 4 5 1 3 diafn ( ( 𝐾𝑉𝑊𝐻 ) → 𝐼 Fn { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑦 ( le ‘ 𝐾 ) 𝑊 } )
7 fvelrnb ( 𝐼 Fn { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑦 ( le ‘ 𝐾 ) 𝑊 } → ( 𝑆 ∈ ran 𝐼 ↔ ∃ 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑦 ( le ‘ 𝐾 ) 𝑊 } ( 𝐼𝑥 ) = 𝑆 ) )
8 6 7 syl ( ( 𝐾𝑉𝑊𝐻 ) → ( 𝑆 ∈ ran 𝐼 ↔ ∃ 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑦 ( le ‘ 𝐾 ) 𝑊 } ( 𝐼𝑥 ) = 𝑆 ) )
9 breq1 ( 𝑦 = 𝑥 → ( 𝑦 ( le ‘ 𝐾 ) 𝑊𝑥 ( le ‘ 𝐾 ) 𝑊 ) )
10 9 elrab ( 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑦 ( le ‘ 𝐾 ) 𝑊 } ↔ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) )
11 4 5 1 2 3 diass ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝐼𝑥 ) ⊆ 𝑇 )
12 11 ex ( ( 𝐾𝑉𝑊𝐻 ) → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) → ( 𝐼𝑥 ) ⊆ 𝑇 ) )
13 sseq1 ( ( 𝐼𝑥 ) = 𝑆 → ( ( 𝐼𝑥 ) ⊆ 𝑇𝑆𝑇 ) )
14 13 biimpcd ( ( 𝐼𝑥 ) ⊆ 𝑇 → ( ( 𝐼𝑥 ) = 𝑆𝑆𝑇 ) )
15 12 14 syl6 ( ( 𝐾𝑉𝑊𝐻 ) → ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑥 ( le ‘ 𝐾 ) 𝑊 ) → ( ( 𝐼𝑥 ) = 𝑆𝑆𝑇 ) ) )
16 10 15 syl5bi ( ( 𝐾𝑉𝑊𝐻 ) → ( 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑦 ( le ‘ 𝐾 ) 𝑊 } → ( ( 𝐼𝑥 ) = 𝑆𝑆𝑇 ) ) )
17 16 rexlimdv ( ( 𝐾𝑉𝑊𝐻 ) → ( ∃ 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝐾 ) ∣ 𝑦 ( le ‘ 𝐾 ) 𝑊 } ( 𝐼𝑥 ) = 𝑆𝑆𝑇 ) )
18 8 17 sylbid ( ( 𝐾𝑉𝑊𝐻 ) → ( 𝑆 ∈ ran 𝐼𝑆𝑇 ) )
19 18 imp ( ( ( 𝐾𝑉𝑊𝐻 ) ∧ 𝑆 ∈ ran 𝐼 ) → 𝑆𝑇 )