Step |
Hyp |
Ref |
Expression |
1 |
|
diaelrn.h |
|- H = ( LHyp ` K ) |
2 |
|
diaelrn.t |
|- T = ( ( LTrn ` K ) ` W ) |
3 |
|
diaelrn.i |
|- I = ( ( DIsoA ` K ) ` W ) |
4 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
5 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
6 |
4 5 1 3
|
diafn |
|- ( ( K e. V /\ W e. H ) -> I Fn { y e. ( Base ` K ) | y ( le ` K ) W } ) |
7 |
|
fvelrnb |
|- ( I Fn { y e. ( Base ` K ) | y ( le ` K ) W } -> ( S e. ran I <-> E. x e. { y e. ( Base ` K ) | y ( le ` K ) W } ( I ` x ) = S ) ) |
8 |
6 7
|
syl |
|- ( ( K e. V /\ W e. H ) -> ( S e. ran I <-> E. x e. { y e. ( Base ` K ) | y ( le ` K ) W } ( I ` x ) = S ) ) |
9 |
|
breq1 |
|- ( y = x -> ( y ( le ` K ) W <-> x ( le ` K ) W ) ) |
10 |
9
|
elrab |
|- ( x e. { y e. ( Base ` K ) | y ( le ` K ) W } <-> ( x e. ( Base ` K ) /\ x ( le ` K ) W ) ) |
11 |
4 5 1 2 3
|
diass |
|- ( ( ( K e. V /\ W e. H ) /\ ( x e. ( Base ` K ) /\ x ( le ` K ) W ) ) -> ( I ` x ) C_ T ) |
12 |
11
|
ex |
|- ( ( K e. V /\ W e. H ) -> ( ( x e. ( Base ` K ) /\ x ( le ` K ) W ) -> ( I ` x ) C_ T ) ) |
13 |
|
sseq1 |
|- ( ( I ` x ) = S -> ( ( I ` x ) C_ T <-> S C_ T ) ) |
14 |
13
|
biimpcd |
|- ( ( I ` x ) C_ T -> ( ( I ` x ) = S -> S C_ T ) ) |
15 |
12 14
|
syl6 |
|- ( ( K e. V /\ W e. H ) -> ( ( x e. ( Base ` K ) /\ x ( le ` K ) W ) -> ( ( I ` x ) = S -> S C_ T ) ) ) |
16 |
10 15
|
syl5bi |
|- ( ( K e. V /\ W e. H ) -> ( x e. { y e. ( Base ` K ) | y ( le ` K ) W } -> ( ( I ` x ) = S -> S C_ T ) ) ) |
17 |
16
|
rexlimdv |
|- ( ( K e. V /\ W e. H ) -> ( E. x e. { y e. ( Base ` K ) | y ( le ` K ) W } ( I ` x ) = S -> S C_ T ) ) |
18 |
8 17
|
sylbid |
|- ( ( K e. V /\ W e. H ) -> ( S e. ran I -> S C_ T ) ) |
19 |
18
|
imp |
|- ( ( ( K e. V /\ W e. H ) /\ S e. ran I ) -> S C_ T ) |