| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dialss.b |
|- B = ( Base ` K ) |
| 2 |
|
dialss.l |
|- .<_ = ( le ` K ) |
| 3 |
|
dialss.h |
|- H = ( LHyp ` K ) |
| 4 |
|
dialss.u |
|- U = ( ( DVecA ` K ) ` W ) |
| 5 |
|
dialss.i |
|- I = ( ( DIsoA ` K ) ` W ) |
| 6 |
|
dialss.s |
|- S = ( LSubSp ` U ) |
| 7 |
|
eqidd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( Scalar ` U ) = ( Scalar ` U ) ) |
| 8 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
| 9 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
| 10 |
|
eqid |
|- ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) |
| 11 |
3 8 4 9 10
|
dvabase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` ( Scalar ` U ) ) = ( ( TEndo ` K ) ` W ) ) |
| 12 |
11
|
eqcomd |
|- ( ( K e. HL /\ W e. H ) -> ( ( TEndo ` K ) ` W ) = ( Base ` ( Scalar ` U ) ) ) |
| 13 |
12
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( ( TEndo ` K ) ` W ) = ( Base ` ( Scalar ` U ) ) ) |
| 14 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
| 15 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 16 |
3 14 4 15
|
dvavbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` U ) = ( ( LTrn ` K ) ` W ) ) |
| 17 |
16
|
eqcomd |
|- ( ( K e. HL /\ W e. H ) -> ( ( LTrn ` K ) ` W ) = ( Base ` U ) ) |
| 18 |
17
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( ( LTrn ` K ) ` W ) = ( Base ` U ) ) |
| 19 |
|
eqidd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( +g ` U ) = ( +g ` U ) ) |
| 20 |
|
eqidd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( .s ` U ) = ( .s ` U ) ) |
| 21 |
6
|
a1i |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> S = ( LSubSp ` U ) ) |
| 22 |
1 2 3 14 5
|
diass |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) C_ ( ( LTrn ` K ) ` W ) ) |
| 23 |
1 2 3 5
|
dian0 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) =/= (/) ) |
| 24 |
|
simpll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 25 |
|
simpr1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> x e. ( ( TEndo ` K ) ` W ) ) |
| 26 |
|
simplr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( X e. B /\ X .<_ W ) ) |
| 27 |
|
simpr2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> a e. ( I ` X ) ) |
| 28 |
1 2 3 14 5
|
diael |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ a e. ( I ` X ) ) -> a e. ( ( LTrn ` K ) ` W ) ) |
| 29 |
24 26 27 28
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> a e. ( ( LTrn ` K ) ` W ) ) |
| 30 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
| 31 |
3 14 8 4 30
|
dvavsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( ( LTrn ` K ) ` W ) ) ) -> ( x ( .s ` U ) a ) = ( x ` a ) ) |
| 32 |
24 25 29 31
|
syl12anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( x ( .s ` U ) a ) = ( x ` a ) ) |
| 33 |
32
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( x ( .s ` U ) a ) ( +g ` U ) b ) = ( ( x ` a ) ( +g ` U ) b ) ) |
| 34 |
3 14 8
|
tendocl |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ( ( TEndo ` K ) ` W ) /\ a e. ( ( LTrn ` K ) ` W ) ) -> ( x ` a ) e. ( ( LTrn ` K ) ` W ) ) |
| 35 |
24 25 29 34
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( x ` a ) e. ( ( LTrn ` K ) ` W ) ) |
| 36 |
|
simpr3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> b e. ( I ` X ) ) |
| 37 |
1 2 3 14 5
|
diael |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ b e. ( I ` X ) ) -> b e. ( ( LTrn ` K ) ` W ) ) |
| 38 |
24 26 36 37
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> b e. ( ( LTrn ` K ) ` W ) ) |
| 39 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
| 40 |
3 14 4 39
|
dvavadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( x ` a ) e. ( ( LTrn ` K ) ` W ) /\ b e. ( ( LTrn ` K ) ` W ) ) ) -> ( ( x ` a ) ( +g ` U ) b ) = ( ( x ` a ) o. b ) ) |
| 41 |
24 35 38 40
|
syl12anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( x ` a ) ( +g ` U ) b ) = ( ( x ` a ) o. b ) ) |
| 42 |
33 41
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( x ( .s ` U ) a ) ( +g ` U ) b ) = ( ( x ` a ) o. b ) ) |
| 43 |
3 14
|
ltrnco |
|- ( ( ( K e. HL /\ W e. H ) /\ ( x ` a ) e. ( ( LTrn ` K ) ` W ) /\ b e. ( ( LTrn ` K ) ` W ) ) -> ( ( x ` a ) o. b ) e. ( ( LTrn ` K ) ` W ) ) |
| 44 |
24 35 38 43
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( x ` a ) o. b ) e. ( ( LTrn ` K ) ` W ) ) |
| 45 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 46 |
45
|
ad3antrrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> K e. Lat ) |
| 47 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
| 48 |
1 3 14 47
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( x ` a ) o. b ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( ( x ` a ) o. b ) ) e. B ) |
| 49 |
24 44 48
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( ( x ` a ) o. b ) ) e. B ) |
| 50 |
1 3 14 47
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( x ` a ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) e. B ) |
| 51 |
24 35 50
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) e. B ) |
| 52 |
1 3 14 47
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ b e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` b ) e. B ) |
| 53 |
24 38 52
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` b ) e. B ) |
| 54 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 55 |
1 54
|
latjcl |
|- ( ( K e. Lat /\ ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) e. B /\ ( ( ( trL ` K ) ` W ) ` b ) e. B ) -> ( ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) e. B ) |
| 56 |
46 51 53 55
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) e. B ) |
| 57 |
|
simplrl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> X e. B ) |
| 58 |
2 54 3 14 47
|
trlco |
|- ( ( ( K e. HL /\ W e. H ) /\ ( x ` a ) e. ( ( LTrn ` K ) ` W ) /\ b e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( ( x ` a ) o. b ) ) .<_ ( ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) ) |
| 59 |
24 35 38 58
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( ( x ` a ) o. b ) ) .<_ ( ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) ) |
| 60 |
1 3 14 47
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ a e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` a ) e. B ) |
| 61 |
24 29 60
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` a ) e. B ) |
| 62 |
2 3 14 47 8
|
tendotp |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ( ( TEndo ` K ) ` W ) /\ a e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) .<_ ( ( ( trL ` K ) ` W ) ` a ) ) |
| 63 |
24 25 29 62
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) .<_ ( ( ( trL ` K ) ` W ) ` a ) ) |
| 64 |
1 2 3 14 47 5
|
diatrl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ a e. ( I ` X ) ) -> ( ( ( trL ` K ) ` W ) ` a ) .<_ X ) |
| 65 |
24 26 27 64
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` a ) .<_ X ) |
| 66 |
1 2 46 51 61 57 63 65
|
lattrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) .<_ X ) |
| 67 |
1 2 3 14 47 5
|
diatrl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ b e. ( I ` X ) ) -> ( ( ( trL ` K ) ` W ) ` b ) .<_ X ) |
| 68 |
24 26 36 67
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` b ) .<_ X ) |
| 69 |
1 2 54
|
latjle12 |
|- ( ( K e. Lat /\ ( ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) e. B /\ ( ( ( trL ` K ) ` W ) ` b ) e. B /\ X e. B ) ) -> ( ( ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) .<_ X /\ ( ( ( trL ` K ) ` W ) ` b ) .<_ X ) <-> ( ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) .<_ X ) ) |
| 70 |
46 51 53 57 69
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) .<_ X /\ ( ( ( trL ` K ) ` W ) ` b ) .<_ X ) <-> ( ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) .<_ X ) ) |
| 71 |
66 68 70
|
mpbi2and |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) .<_ X ) |
| 72 |
1 2 46 49 56 57 59 71
|
lattrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( ( x ` a ) o. b ) ) .<_ X ) |
| 73 |
1 2 3 14 47 5
|
diaelval |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( ( ( x ` a ) o. b ) e. ( I ` X ) <-> ( ( ( x ` a ) o. b ) e. ( ( LTrn ` K ) ` W ) /\ ( ( ( trL ` K ) ` W ) ` ( ( x ` a ) o. b ) ) .<_ X ) ) ) |
| 74 |
73
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( x ` a ) o. b ) e. ( I ` X ) <-> ( ( ( x ` a ) o. b ) e. ( ( LTrn ` K ) ` W ) /\ ( ( ( trL ` K ) ` W ) ` ( ( x ` a ) o. b ) ) .<_ X ) ) ) |
| 75 |
44 72 74
|
mpbir2and |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( x ` a ) o. b ) e. ( I ` X ) ) |
| 76 |
42 75
|
eqeltrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( x ( .s ` U ) a ) ( +g ` U ) b ) e. ( I ` X ) ) |
| 77 |
7 13 18 19 20 21 22 23 76
|
islssd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) e. S ) |