Step |
Hyp |
Ref |
Expression |
1 |
|
dialss.b |
|- B = ( Base ` K ) |
2 |
|
dialss.l |
|- .<_ = ( le ` K ) |
3 |
|
dialss.h |
|- H = ( LHyp ` K ) |
4 |
|
dialss.u |
|- U = ( ( DVecA ` K ) ` W ) |
5 |
|
dialss.i |
|- I = ( ( DIsoA ` K ) ` W ) |
6 |
|
dialss.s |
|- S = ( LSubSp ` U ) |
7 |
|
eqidd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( Scalar ` U ) = ( Scalar ` U ) ) |
8 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
9 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
10 |
|
eqid |
|- ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) |
11 |
3 8 4 9 10
|
dvabase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` ( Scalar ` U ) ) = ( ( TEndo ` K ) ` W ) ) |
12 |
11
|
eqcomd |
|- ( ( K e. HL /\ W e. H ) -> ( ( TEndo ` K ) ` W ) = ( Base ` ( Scalar ` U ) ) ) |
13 |
12
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( ( TEndo ` K ) ` W ) = ( Base ` ( Scalar ` U ) ) ) |
14 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
15 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
16 |
3 14 4 15
|
dvavbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` U ) = ( ( LTrn ` K ) ` W ) ) |
17 |
16
|
eqcomd |
|- ( ( K e. HL /\ W e. H ) -> ( ( LTrn ` K ) ` W ) = ( Base ` U ) ) |
18 |
17
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( ( LTrn ` K ) ` W ) = ( Base ` U ) ) |
19 |
|
eqidd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( +g ` U ) = ( +g ` U ) ) |
20 |
|
eqidd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( .s ` U ) = ( .s ` U ) ) |
21 |
6
|
a1i |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> S = ( LSubSp ` U ) ) |
22 |
1 2 3 14 5
|
diass |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) C_ ( ( LTrn ` K ) ` W ) ) |
23 |
1 2 3 5
|
dian0 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) =/= (/) ) |
24 |
|
simpll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( K e. HL /\ W e. H ) ) |
25 |
|
simpr1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> x e. ( ( TEndo ` K ) ` W ) ) |
26 |
|
simplr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( X e. B /\ X .<_ W ) ) |
27 |
|
simpr2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> a e. ( I ` X ) ) |
28 |
1 2 3 14 5
|
diael |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ a e. ( I ` X ) ) -> a e. ( ( LTrn ` K ) ` W ) ) |
29 |
24 26 27 28
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> a e. ( ( LTrn ` K ) ` W ) ) |
30 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
31 |
3 14 8 4 30
|
dvavsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( ( LTrn ` K ) ` W ) ) ) -> ( x ( .s ` U ) a ) = ( x ` a ) ) |
32 |
24 25 29 31
|
syl12anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( x ( .s ` U ) a ) = ( x ` a ) ) |
33 |
32
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( x ( .s ` U ) a ) ( +g ` U ) b ) = ( ( x ` a ) ( +g ` U ) b ) ) |
34 |
3 14 8
|
tendocl |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ( ( TEndo ` K ) ` W ) /\ a e. ( ( LTrn ` K ) ` W ) ) -> ( x ` a ) e. ( ( LTrn ` K ) ` W ) ) |
35 |
24 25 29 34
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( x ` a ) e. ( ( LTrn ` K ) ` W ) ) |
36 |
|
simpr3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> b e. ( I ` X ) ) |
37 |
1 2 3 14 5
|
diael |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ b e. ( I ` X ) ) -> b e. ( ( LTrn ` K ) ` W ) ) |
38 |
24 26 36 37
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> b e. ( ( LTrn ` K ) ` W ) ) |
39 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
40 |
3 14 4 39
|
dvavadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( x ` a ) e. ( ( LTrn ` K ) ` W ) /\ b e. ( ( LTrn ` K ) ` W ) ) ) -> ( ( x ` a ) ( +g ` U ) b ) = ( ( x ` a ) o. b ) ) |
41 |
24 35 38 40
|
syl12anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( x ` a ) ( +g ` U ) b ) = ( ( x ` a ) o. b ) ) |
42 |
33 41
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( x ( .s ` U ) a ) ( +g ` U ) b ) = ( ( x ` a ) o. b ) ) |
43 |
3 14
|
ltrnco |
|- ( ( ( K e. HL /\ W e. H ) /\ ( x ` a ) e. ( ( LTrn ` K ) ` W ) /\ b e. ( ( LTrn ` K ) ` W ) ) -> ( ( x ` a ) o. b ) e. ( ( LTrn ` K ) ` W ) ) |
44 |
24 35 38 43
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( x ` a ) o. b ) e. ( ( LTrn ` K ) ` W ) ) |
45 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
46 |
45
|
ad3antrrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> K e. Lat ) |
47 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
48 |
1 3 14 47
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( x ` a ) o. b ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( ( x ` a ) o. b ) ) e. B ) |
49 |
24 44 48
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( ( x ` a ) o. b ) ) e. B ) |
50 |
1 3 14 47
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( x ` a ) e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) e. B ) |
51 |
24 35 50
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) e. B ) |
52 |
1 3 14 47
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ b e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` b ) e. B ) |
53 |
24 38 52
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` b ) e. B ) |
54 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
55 |
1 54
|
latjcl |
|- ( ( K e. Lat /\ ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) e. B /\ ( ( ( trL ` K ) ` W ) ` b ) e. B ) -> ( ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) e. B ) |
56 |
46 51 53 55
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) e. B ) |
57 |
|
simplrl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> X e. B ) |
58 |
2 54 3 14 47
|
trlco |
|- ( ( ( K e. HL /\ W e. H ) /\ ( x ` a ) e. ( ( LTrn ` K ) ` W ) /\ b e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( ( x ` a ) o. b ) ) .<_ ( ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) ) |
59 |
24 35 38 58
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( ( x ` a ) o. b ) ) .<_ ( ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) ) |
60 |
1 3 14 47
|
trlcl |
|- ( ( ( K e. HL /\ W e. H ) /\ a e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` a ) e. B ) |
61 |
24 29 60
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` a ) e. B ) |
62 |
2 3 14 47 8
|
tendotp |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ( ( TEndo ` K ) ` W ) /\ a e. ( ( LTrn ` K ) ` W ) ) -> ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) .<_ ( ( ( trL ` K ) ` W ) ` a ) ) |
63 |
24 25 29 62
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) .<_ ( ( ( trL ` K ) ` W ) ` a ) ) |
64 |
1 2 3 14 47 5
|
diatrl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ a e. ( I ` X ) ) -> ( ( ( trL ` K ) ` W ) ` a ) .<_ X ) |
65 |
24 26 27 64
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` a ) .<_ X ) |
66 |
1 2 46 51 61 57 63 65
|
lattrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) .<_ X ) |
67 |
1 2 3 14 47 5
|
diatrl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) /\ b e. ( I ` X ) ) -> ( ( ( trL ` K ) ` W ) ` b ) .<_ X ) |
68 |
24 26 36 67
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` b ) .<_ X ) |
69 |
1 2 54
|
latjle12 |
|- ( ( K e. Lat /\ ( ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) e. B /\ ( ( ( trL ` K ) ` W ) ` b ) e. B /\ X e. B ) ) -> ( ( ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) .<_ X /\ ( ( ( trL ` K ) ` W ) ` b ) .<_ X ) <-> ( ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) .<_ X ) ) |
70 |
46 51 53 57 69
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) .<_ X /\ ( ( ( trL ` K ) ` W ) ` b ) .<_ X ) <-> ( ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) .<_ X ) ) |
71 |
66 68 70
|
mpbi2and |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( ( trL ` K ) ` W ) ` ( x ` a ) ) ( join ` K ) ( ( ( trL ` K ) ` W ) ` b ) ) .<_ X ) |
72 |
1 2 46 49 56 57 59 71
|
lattrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( trL ` K ) ` W ) ` ( ( x ` a ) o. b ) ) .<_ X ) |
73 |
1 2 3 14 47 5
|
diaelval |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( ( ( x ` a ) o. b ) e. ( I ` X ) <-> ( ( ( x ` a ) o. b ) e. ( ( LTrn ` K ) ` W ) /\ ( ( ( trL ` K ) ` W ) ` ( ( x ` a ) o. b ) ) .<_ X ) ) ) |
74 |
73
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( ( x ` a ) o. b ) e. ( I ` X ) <-> ( ( ( x ` a ) o. b ) e. ( ( LTrn ` K ) ` W ) /\ ( ( ( trL ` K ) ` W ) ` ( ( x ` a ) o. b ) ) .<_ X ) ) ) |
75 |
44 72 74
|
mpbir2and |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( x ` a ) o. b ) e. ( I ` X ) ) |
76 |
42 75
|
eqeltrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ a e. ( I ` X ) /\ b e. ( I ` X ) ) ) -> ( ( x ( .s ` U ) a ) ( +g ` U ) b ) e. ( I ` X ) ) |
77 |
7 13 18 19 20 21 22 23 76
|
islssd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) e. S ) |